| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0fodjrn | Structured version Visualization version GIF version | ||
| Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0fodjrn.k | ⊢ Ⅎ𝑘𝜑 |
| sge0fodjrn.n | ⊢ Ⅎ𝑛𝜑 |
| sge0fodjrn.bd | ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
| sge0fodjrn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| sge0fodjrn.f | ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) |
| sge0fodjrn.dj | ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) |
| sge0fodjrn.fng | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
| sge0fodjrn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
| sge0fodjrn.b0 | ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) |
| Ref | Expression |
|---|---|
| sge0fodjrn | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0fodjrn.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | sge0fodjrn.n | . 2 ⊢ Ⅎ𝑛𝜑 | |
| 3 | sge0fodjrn.bd | . 2 ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | |
| 4 | sge0fodjrn.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 5 | sge0fodjrn.f | . 2 ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) | |
| 6 | sge0fodjrn.dj | . 2 ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) | |
| 7 | sge0fodjrn.fng | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | |
| 8 | sge0fodjrn.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
| 9 | sge0fodjrn.b0 | . 2 ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) | |
| 10 | eqid 2731 | . 2 ⊢ (◡𝐹 “ {∅}) = (◡𝐹 “ {∅}) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sge0fodjrnlem 46519 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∅c0 4282 {csn 4575 Disj wdisj 5060 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 –onto→wfo 6485 ‘cfv 6487 (class class class)co 7352 0cc0 11012 +∞cpnf 11149 [,]cicc 13254 Σ^csumge0 46465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-disj 5061 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-xadd 13018 df-ico 13257 df-icc 13258 df-fz 13414 df-fzo 13561 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-sum 15600 df-sumge0 46466 |
| This theorem is referenced by: ismeannd 46570 |
| Copyright terms: Public domain | W3C validator |