Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0fodjrn | Structured version Visualization version GIF version |
Description: Re-index a nonnegative extended sum using an onto function with disjoint range, when the empty set is assigned 0 in the sum (this is true, for example, both for measures and outer measures). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0fodjrn.k | ⊢ Ⅎ𝑘𝜑 |
sge0fodjrn.n | ⊢ Ⅎ𝑛𝜑 |
sge0fodjrn.bd | ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) |
sge0fodjrn.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
sge0fodjrn.f | ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) |
sge0fodjrn.dj | ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) |
sge0fodjrn.fng | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) |
sge0fodjrn.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
sge0fodjrn.b0 | ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) |
Ref | Expression |
---|---|
sge0fodjrn | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0fodjrn.k | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | sge0fodjrn.n | . 2 ⊢ Ⅎ𝑛𝜑 | |
3 | sge0fodjrn.bd | . 2 ⊢ (𝑘 = 𝐺 → 𝐵 = 𝐷) | |
4 | sge0fodjrn.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
5 | sge0fodjrn.f | . 2 ⊢ (𝜑 → 𝐹:𝐶–onto→𝐴) | |
6 | sge0fodjrn.dj | . 2 ⊢ (𝜑 → Disj 𝑛 ∈ 𝐶 (𝐹‘𝑛)) | |
7 | sge0fodjrn.fng | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝐶) → (𝐹‘𝑛) = 𝐺) | |
8 | sge0fodjrn.b | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
9 | sge0fodjrn.b0 | . 2 ⊢ ((𝜑 ∧ 𝑘 = ∅) → 𝐵 = 0) | |
10 | eqid 2739 | . 2 ⊢ (◡𝐹 “ {∅}) = (◡𝐹 “ {∅}) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | sge0fodjrnlem 43961 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = (Σ^‘(𝑛 ∈ 𝐶 ↦ 𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2107 ∅c0 4257 {csn 4562 Disj wdisj 5040 ↦ cmpt 5158 ◡ccnv 5589 “ cima 5593 –onto→wfo 6435 ‘cfv 6437 (class class class)co 7284 0cc0 10880 +∞cpnf 11015 [,]cicc 13091 Σ^csumge0 43907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-inf2 9408 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 ax-pre-mulgt0 10957 ax-pre-sup 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rmo 3072 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-disj 5041 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-isom 6446 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-1st 7840 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-1o 8306 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-fin 8746 df-sup 9210 df-oi 9278 df-card 9706 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 df-sub 11216 df-neg 11217 df-div 11642 df-nn 11983 df-2 12045 df-3 12046 df-n0 12243 df-z 12329 df-uz 12592 df-rp 12740 df-xadd 12858 df-ico 13094 df-icc 13095 df-fz 13249 df-fzo 13392 df-seq 13731 df-exp 13792 df-hash 14054 df-cj 14819 df-re 14820 df-im 14821 df-sqrt 14955 df-abs 14956 df-clim 15206 df-sum 15407 df-sumge0 43908 |
This theorem is referenced by: ismeannd 44012 |
Copyright terms: Public domain | W3C validator |