![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimagt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimagt.s | β’ (π β π β SAlg) |
smfpreimagt.f | β’ (π β πΉ β (SMblFnβπ)) |
smfpreimagt.d | β’ π· = dom πΉ |
smfpreimagt.a | β’ (π β π΄ β β) |
Ref | Expression |
---|---|
smfpreimagt | β’ (π β {π₯ β π· β£ π΄ < (πΉβπ₯)} β (π βΎt π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimagt.a | . 2 β’ (π β π΄ β β) | |
2 | smfpreimagt.f | . . . 4 β’ (π β πΉ β (SMblFnβπ)) | |
3 | smfpreimagt.s | . . . . 5 β’ (π β π β SAlg) | |
4 | smfpreimagt.d | . . . . 5 β’ π· = dom πΉ | |
5 | 3, 4 | issmfgt 45472 | . . . 4 β’ (π β (πΉ β (SMblFnβπ) β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ π < (πΉβπ₯)} β (π βΎt π·)))) |
6 | 2, 5 | mpbid 231 | . . 3 β’ (π β (π· β βͺ π β§ πΉ:π·βΆβ β§ βπ β β {π₯ β π· β£ π < (πΉβπ₯)} β (π βΎt π·))) |
7 | 6 | simp3d 1145 | . 2 β’ (π β βπ β β {π₯ β π· β£ π < (πΉβπ₯)} β (π βΎt π·)) |
8 | breq1 5152 | . . . . 5 β’ (π = π΄ β (π < (πΉβπ₯) β π΄ < (πΉβπ₯))) | |
9 | 8 | rabbidv 3441 | . . . 4 β’ (π = π΄ β {π₯ β π· β£ π < (πΉβπ₯)} = {π₯ β π· β£ π΄ < (πΉβπ₯)}) |
10 | 9 | eleq1d 2819 | . . 3 β’ (π = π΄ β ({π₯ β π· β£ π < (πΉβπ₯)} β (π βΎt π·) β {π₯ β π· β£ π΄ < (πΉβπ₯)} β (π βΎt π·))) |
11 | 10 | rspcva 3611 | . 2 β’ ((π΄ β β β§ βπ β β {π₯ β π· β£ π < (πΉβπ₯)} β (π βΎt π·)) β {π₯ β π· β£ π΄ < (πΉβπ₯)} β (π βΎt π·)) |
12 | 1, 7, 11 | syl2anc 585 | 1 β’ (π β {π₯ β π· β£ π΄ < (πΉβπ₯)} β (π βΎt π·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 {crab 3433 β wss 3949 βͺ cuni 4909 class class class wbr 5149 dom cdm 5677 βΆwf 6540 βcfv 6544 (class class class)co 7409 βcr 11109 < clt 11248 βΎt crest 17366 SAlgcsalg 45024 SMblFncsmblfn 45411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-inf2 9636 ax-cc 10430 ax-ac2 10458 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-card 9934 df-acn 9937 df-ac 10111 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-q 12933 df-rp 12975 df-ioo 13328 df-ico 13330 df-fl 13757 df-rest 17368 df-salg 45025 df-smblfn 45412 |
This theorem is referenced by: smfpreimagtf 45484 issmfge 45486 |
Copyright terms: Public domain | W3C validator |