![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smup1 | Structured version Visualization version GIF version |
Description: Rewrite smupp1 15662 using only smul instead of the internal recursive function 𝑃. (Contributed by Mario Carneiro, 20-Sep-2016.) |
Ref | Expression |
---|---|
smup1.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ0) |
smup1.b | ⊢ (𝜑 → 𝐵 ⊆ ℕ0) |
smup1.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
smup1 | ⊢ (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smup1.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ0) | |
2 | smup1.b | . . 3 ⊢ (𝜑 → 𝐵 ⊆ ℕ0) | |
3 | eqid 2794 | . . 3 ⊢ seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | |
4 | smup1.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | 1, 2, 3, 4 | smupp1 15662 | . 2 ⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
6 | peano2nn0 11787 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0) | |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 + 1) ∈ ℕ0) |
8 | 1, 2, 3, 7 | smupval 15670 | . 2 ⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑁 + 1)) = ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵)) |
9 | 1, 2, 3, 4 | smupval 15670 | . . 3 ⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) |
10 | 9 | oveq1d 7034 | . 2 ⊢ (𝜑 → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)}) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
11 | 5, 8, 10 | 3eqtr3d 2838 | 1 ⊢ (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 {crab 3108 ∩ cin 3860 ⊆ wss 3861 ∅c0 4213 ifcif 4383 𝒫 cpw 4455 ↦ cmpt 5043 ‘cfv 6228 (class class class)co 7019 ∈ cmpo 7021 0cc0 10386 1c1 10387 + caddc 10389 − cmin 10719 ℕ0cn0 11747 ..^cfzo 12883 seqcseq 13219 sadd csad 15602 smul csmu 15603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-xor 1497 df-tru 1525 df-fal 1535 df-had 1577 df-cad 1590 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-disj 4933 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-se 5406 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-isom 6237 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-2o 7957 df-oadd 7960 df-er 8142 df-map 8261 df-pm 8262 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-sup 8755 df-inf 8756 df-oi 8823 df-dju 9179 df-card 9217 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-n0 11748 df-xnn0 11818 df-z 11832 df-uz 12094 df-rp 12240 df-fz 12743 df-fzo 12884 df-fl 13012 df-mod 13088 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-sum 14877 df-dvds 15441 df-bits 15604 df-sad 15633 df-smu 15658 |
This theorem is referenced by: smumullem 15674 |
Copyright terms: Public domain | W3C validator |