![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bccn1 | Structured version Visualization version GIF version |
Description: Generalized binomial coefficient: 𝐶 choose 1. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
Ref | Expression |
---|---|
bccn0.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
bccn1 | ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bccn0.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | 0nn0 12548 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
4 | 1, 3 | bccp1k 44353 | . . 3 ⊢ (𝜑 → (𝐶C𝑐(0 + 1)) = ((𝐶C𝑐0) · ((𝐶 − 0) / (0 + 1)))) |
5 | 0p1e1 12395 | . . . . 5 ⊢ (0 + 1) = 1 | |
6 | 5 | oveq2i 7449 | . . . 4 ⊢ (𝐶C𝑐(0 + 1)) = (𝐶C𝑐1) |
7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (𝐶C𝑐(0 + 1)) = (𝐶C𝑐1)) |
8 | 1 | bccn0 44355 | . . . 4 ⊢ (𝜑 → (𝐶C𝑐0) = 1) |
9 | 1 | subid1d 11616 | . . . . . 6 ⊢ (𝜑 → (𝐶 − 0) = 𝐶) |
10 | 5 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (0 + 1) = 1) |
11 | 9, 10 | oveq12d 7456 | . . . . 5 ⊢ (𝜑 → ((𝐶 − 0) / (0 + 1)) = (𝐶 / 1)) |
12 | 1 | div1d 12042 | . . . . 5 ⊢ (𝜑 → (𝐶 / 1) = 𝐶) |
13 | 11, 12 | eqtrd 2777 | . . . 4 ⊢ (𝜑 → ((𝐶 − 0) / (0 + 1)) = 𝐶) |
14 | 8, 13 | oveq12d 7456 | . . 3 ⊢ (𝜑 → ((𝐶C𝑐0) · ((𝐶 − 0) / (0 + 1))) = (1 · 𝐶)) |
15 | 4, 7, 14 | 3eqtr3d 2785 | . 2 ⊢ (𝜑 → (𝐶C𝑐1) = (1 · 𝐶)) |
16 | 1 | mullidd 11286 | . 2 ⊢ (𝜑 → (1 · 𝐶) = 𝐶) |
17 | 15, 16 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 (class class class)co 7438 ℂcc 11160 0cc0 11162 1c1 11163 + caddc 11165 · cmul 11167 − cmin 11499 / cdiv 11927 ℕ0cn0 12533 C𝑐cbcc 44348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-oi 9557 df-card 9986 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-rp 13042 df-fz 13554 df-fzo 13701 df-seq 14049 df-exp 14109 df-fac 14319 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-prod 15946 df-risefac 16048 df-fallfac 16049 df-bcc 44349 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |