![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcmineqlem17 | Structured version Visualization version GIF version |
Description: Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.) |
Ref | Expression |
---|---|
lcmineqlem17.1 | โข (๐ โ ๐ โ โ0) |
Ref | Expression |
---|---|
lcmineqlem17 | โข (๐ โ (2โ(2 ยท ๐)) โค (((2 ยท ๐) + 1) ยท ((2 ยท ๐)C๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn0 12437 | . . . . . 6 โข 2 โ โ0 | |
2 | 1 | a1i 11 | . . . . 5 โข (๐ โ 2 โ โ0) |
3 | lcmineqlem17.1 | . . . . 5 โข (๐ โ ๐ โ โ0) | |
4 | 2, 3 | nn0mulcld 12485 | . . . 4 โข (๐ โ (2 ยท ๐) โ โ0) |
5 | binom11 15724 | . . . 4 โข ((2 ยท ๐) โ โ0 โ (2โ(2 ยท ๐)) = ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐)) | |
6 | 4, 5 | syl 17 | . . 3 โข (๐ โ (2โ(2 ยท ๐)) = ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐)) |
7 | fzfid 13885 | . . . 4 โข (๐ โ (0...(2 ยท ๐)) โ Fin) | |
8 | 4 | adantr 482 | . . . . . . 7 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ (2 ยท ๐) โ โ0) |
9 | elfzelz 13448 | . . . . . . . 8 โข (๐ โ (0...(2 ยท ๐)) โ ๐ โ โค) | |
10 | 9 | adantl 483 | . . . . . . 7 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ๐ โ โค) |
11 | 8, 10 | jca 513 | . . . . . 6 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ((2 ยท ๐) โ โ0 โง ๐ โ โค)) |
12 | bccl 14229 | . . . . . 6 โข (((2 ยท ๐) โ โ0 โง ๐ โ โค) โ ((2 ยท ๐)C๐) โ โ0) | |
13 | 11, 12 | syl 17 | . . . . 5 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ((2 ยท ๐)C๐) โ โ0) |
14 | 13 | nn0red 12481 | . . . 4 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ((2 ยท ๐)C๐) โ โ) |
15 | 3 | nn0zd 12532 | . . . . . . 7 โข (๐ โ ๐ โ โค) |
16 | bccl 14229 | . . . . . . 7 โข (((2 ยท ๐) โ โ0 โง ๐ โ โค) โ ((2 ยท ๐)C๐) โ โ0) | |
17 | 4, 15, 16 | syl2anc 585 | . . . . . 6 โข (๐ โ ((2 ยท ๐)C๐) โ โ0) |
18 | 17 | nn0red 12481 | . . . . 5 โข (๐ โ ((2 ยท ๐)C๐) โ โ) |
19 | 18 | adantr 482 | . . . 4 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ((2 ยท ๐)C๐) โ โ) |
20 | bcmax 26642 | . . . . 5 โข ((๐ โ โ0 โง ๐ โ โค) โ ((2 ยท ๐)C๐) โค ((2 ยท ๐)C๐)) | |
21 | 3, 9, 20 | syl2an 597 | . . . 4 โข ((๐ โง ๐ โ (0...(2 ยท ๐))) โ ((2 ยท ๐)C๐) โค ((2 ยท ๐)C๐)) |
22 | 7, 14, 19, 21 | fsumle 15691 | . . 3 โข (๐ โ ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐) โค ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐)) |
23 | 6, 22 | eqbrtrd 5132 | . 2 โข (๐ โ (2โ(2 ยท ๐)) โค ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐)) |
24 | 17 | nn0cnd 12482 | . . . 4 โข (๐ โ ((2 ยท ๐)C๐) โ โ) |
25 | fsumconst 15682 | . . . 4 โข (((0...(2 ยท ๐)) โ Fin โง ((2 ยท ๐)C๐) โ โ) โ ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐) = ((โฏโ(0...(2 ยท ๐))) ยท ((2 ยท ๐)C๐))) | |
26 | 7, 24, 25 | syl2anc 585 | . . 3 โข (๐ โ ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐) = ((โฏโ(0...(2 ยท ๐))) ยท ((2 ยท ๐)C๐))) |
27 | hashfz0 14339 | . . . . 5 โข ((2 ยท ๐) โ โ0 โ (โฏโ(0...(2 ยท ๐))) = ((2 ยท ๐) + 1)) | |
28 | 4, 27 | syl 17 | . . . 4 โข (๐ โ (โฏโ(0...(2 ยท ๐))) = ((2 ยท ๐) + 1)) |
29 | 28 | oveq1d 7377 | . . 3 โข (๐ โ ((โฏโ(0...(2 ยท ๐))) ยท ((2 ยท ๐)C๐)) = (((2 ยท ๐) + 1) ยท ((2 ยท ๐)C๐))) |
30 | 26, 29 | eqtrd 2777 | . 2 โข (๐ โ ฮฃ๐ โ (0...(2 ยท ๐))((2 ยท ๐)C๐) = (((2 ยท ๐) + 1) ยท ((2 ยท ๐)C๐))) |
31 | 23, 30 | breqtrd 5136 | 1 โข (๐ โ (2โ(2 ยท ๐)) โค (((2 ยท ๐) + 1) ยท ((2 ยท ๐)C๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 397 = wceq 1542 โ wcel 2107 class class class wbr 5110 โcfv 6501 (class class class)co 7362 Fincfn 8890 โcc 11056 โcr 11057 0cc0 11058 1c1 11059 + caddc 11061 ยท cmul 11063 โค cle 11197 2c2 12215 โ0cn0 12420 โคcz 12506 ...cfz 13431 โcexp 13974 Ccbc 14209 โฏchash 14237 ฮฃcsu 15577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-ico 13277 df-fz 13432 df-fzo 13575 df-seq 13914 df-exp 13975 df-fac 14181 df-bc 14210 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-clim 15377 df-sum 15578 |
This theorem is referenced by: lcmineqlem20 40534 |
Copyright terms: Public domain | W3C validator |