Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem17 Structured version   Visualization version   GIF version

Theorem lcmineqlem17 42027
Description: Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmineqlem17.1 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
lcmineqlem17 (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem17
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 12541 . . . . . 6 2 ∈ ℕ0
21a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
3 lcmineqlem17.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
42, 3nn0mulcld 12590 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℕ0)
5 binom11 15865 . . . 4 ((2 · 𝑁) ∈ ℕ0 → (2↑(2 · 𝑁)) = Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘))
64, 5syl 17 . . 3 (𝜑 → (2↑(2 · 𝑁)) = Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘))
7 fzfid 14011 . . . 4 (𝜑 → (0...(2 · 𝑁)) ∈ Fin)
84adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ0)
9 elfzelz 13561 . . . . . . . 8 (𝑘 ∈ (0...(2 · 𝑁)) → 𝑘 ∈ ℤ)
109adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → 𝑘 ∈ ℤ)
118, 10jca 511 . . . . . 6 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁) ∈ ℕ0𝑘 ∈ ℤ))
12 bccl 14358 . . . . . 6 (((2 · 𝑁) ∈ ℕ0𝑘 ∈ ℤ) → ((2 · 𝑁)C𝑘) ∈ ℕ0)
1311, 12syl 17 . . . . 5 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ∈ ℕ0)
1413nn0red 12586 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ∈ ℝ)
153nn0zd 12637 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
16 bccl 14358 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
174, 15, 16syl2anc 584 . . . . . 6 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
1817nn0red 12586 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
1918adantr 480 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑁) ∈ ℝ)
20 bcmax 27337 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((2 · 𝑁)C𝑘) ≤ ((2 · 𝑁)C𝑁))
213, 9, 20syl2an 596 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ≤ ((2 · 𝑁)C𝑁))
227, 14, 19, 21fsumle 15832 . . 3 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘) ≤ Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁))
236, 22eqbrtrd 5170 . 2 (𝜑 → (2↑(2 · 𝑁)) ≤ Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁))
2417nn0cnd 12587 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℂ)
25 fsumconst 15823 . . . 4 (((0...(2 · 𝑁)) ∈ Fin ∧ ((2 · 𝑁)C𝑁) ∈ ℂ) → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)))
267, 24, 25syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)))
27 hashfz0 14468 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → (♯‘(0...(2 · 𝑁))) = ((2 · 𝑁) + 1))
284, 27syl 17 . . . 4 (𝜑 → (♯‘(0...(2 · 𝑁))) = ((2 · 𝑁) + 1))
2928oveq1d 7446 . . 3 (𝜑 → ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
3026, 29eqtrd 2775 . 2 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
3123, 30breqtrd 5174 1 (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  2c2 12319  0cn0 12524  cz 12611  ...cfz 13544  cexp 14099  Ccbc 14338  chash 14366  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  lcmineqlem20  42030
  Copyright terms: Public domain W3C validator