Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem17 Structured version   Visualization version   GIF version

Theorem lcmineqlem17 39597
Description: Inequality of 2^{2n}. (Contributed by metakunt, 29-Apr-2024.)
Hypothesis
Ref Expression
lcmineqlem17.1 (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
lcmineqlem17 (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))

Proof of Theorem lcmineqlem17
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 2nn0 11936 . . . . . 6 2 ∈ ℕ0
21a1i 11 . . . . 5 (𝜑 → 2 ∈ ℕ0)
3 lcmineqlem17.1 . . . . 5 (𝜑𝑁 ∈ ℕ0)
42, 3nn0mulcld 11984 . . . 4 (𝜑 → (2 · 𝑁) ∈ ℕ0)
5 binom11 15220 . . . 4 ((2 · 𝑁) ∈ ℕ0 → (2↑(2 · 𝑁)) = Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘))
64, 5syl 17 . . 3 (𝜑 → (2↑(2 · 𝑁)) = Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘))
7 fzfid 13375 . . . 4 (𝜑 → (0...(2 · 𝑁)) ∈ Fin)
84adantr 485 . . . . . . 7 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ0)
9 elfzelz 12941 . . . . . . . 8 (𝑘 ∈ (0...(2 · 𝑁)) → 𝑘 ∈ ℤ)
109adantl 486 . . . . . . 7 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → 𝑘 ∈ ℤ)
118, 10jca 516 . . . . . 6 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁) ∈ ℕ0𝑘 ∈ ℤ))
12 bccl 13717 . . . . . 6 (((2 · 𝑁) ∈ ℕ0𝑘 ∈ ℤ) → ((2 · 𝑁)C𝑘) ∈ ℕ0)
1311, 12syl 17 . . . . 5 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ∈ ℕ0)
1413nn0red 11980 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ∈ ℝ)
153nn0zd 12109 . . . . . . 7 (𝜑𝑁 ∈ ℤ)
16 bccl 13717 . . . . . . 7 (((2 · 𝑁) ∈ ℕ0𝑁 ∈ ℤ) → ((2 · 𝑁)C𝑁) ∈ ℕ0)
174, 15, 16syl2anc 588 . . . . . 6 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℕ0)
1817nn0red 11980 . . . . 5 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℝ)
1918adantr 485 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑁) ∈ ℝ)
20 bcmax 25946 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → ((2 · 𝑁)C𝑘) ≤ ((2 · 𝑁)C𝑁))
213, 9, 20syl2an 599 . . . 4 ((𝜑𝑘 ∈ (0...(2 · 𝑁))) → ((2 · 𝑁)C𝑘) ≤ ((2 · 𝑁)C𝑁))
227, 14, 19, 21fsumle 15187 . . 3 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑘) ≤ Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁))
236, 22eqbrtrd 5047 . 2 (𝜑 → (2↑(2 · 𝑁)) ≤ Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁))
2417nn0cnd 11981 . . . 4 (𝜑 → ((2 · 𝑁)C𝑁) ∈ ℂ)
25 fsumconst 15178 . . . 4 (((0...(2 · 𝑁)) ∈ Fin ∧ ((2 · 𝑁)C𝑁) ∈ ℂ) → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)))
267, 24, 25syl2anc 588 . . 3 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)))
27 hashfz0 13828 . . . . 5 ((2 · 𝑁) ∈ ℕ0 → (♯‘(0...(2 · 𝑁))) = ((2 · 𝑁) + 1))
284, 27syl 17 . . . 4 (𝜑 → (♯‘(0...(2 · 𝑁))) = ((2 · 𝑁) + 1))
2928oveq1d 7158 . . 3 (𝜑 → ((♯‘(0...(2 · 𝑁))) · ((2 · 𝑁)C𝑁)) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
3026, 29eqtrd 2794 . 2 (𝜑 → Σ𝑘 ∈ (0...(2 · 𝑁))((2 · 𝑁)C𝑁) = (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
3123, 30breqtrd 5051 1 (𝜑 → (2↑(2 · 𝑁)) ≤ (((2 · 𝑁) + 1) · ((2 · 𝑁)C𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112   class class class wbr 5025  cfv 6328  (class class class)co 7143  Fincfn 8520  cc 10558  cr 10559  0cc0 10560  1c1 10561   + caddc 10563   · cmul 10565  cle 10699  2c2 11714  0cn0 11919  cz 12005  ...cfz 12924  cexp 13464  Ccbc 13697  chash 13725  Σcsu 15075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-inf2 9122  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-pre-sup 10638
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-int 4832  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-se 5477  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-1st 7686  df-2nd 7687  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-sup 8924  df-oi 8992  df-card 9386  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-div 11321  df-nn 11660  df-2 11722  df-3 11723  df-n0 11920  df-z 12006  df-uz 12268  df-rp 12416  df-ico 12770  df-fz 12925  df-fzo 13068  df-seq 13404  df-exp 13465  df-fac 13669  df-bc 13698  df-hash 13726  df-cj 14491  df-re 14492  df-im 14493  df-sqrt 14627  df-abs 14628  df-clim 14878  df-sum 15076
This theorem is referenced by:  lcmineqlem20  39600
  Copyright terms: Public domain W3C validator