MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blo3i Structured version   Visualization version   GIF version

Theorem blo3i 29164
Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blo3i ((𝑇𝐿𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → 𝑇𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑀   𝑦,𝑁   𝑦,𝑇   𝑦,𝑈   𝑦,𝑊   𝑦,𝑋
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem blo3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . 6 (𝑥 = 𝐴 → (𝑥 · (𝑀𝑦)) = (𝐴 · (𝑀𝑦)))
21breq2d 5086 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))))
32ralbidv 3112 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))))
43rspcev 3561 . . 3 ((𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
5 isblo3i.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 isblo3i.m . . . . 5 𝑀 = (normCV𝑈)
7 isblo3i.n . . . . 5 𝑁 = (normCV𝑊)
8 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
9 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 isblo3i.u . . . . 5 𝑈 ∈ NrmCVec
11 isblo3i.w . . . . 5 𝑊 ∈ NrmCVec
125, 6, 7, 8, 9, 10, 11isblo3i 29163 . . . 4 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
1312biimpri 227 . . 3 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
144, 13sylan2 593 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦)))) → 𝑇𝐵)
15143impb 1114 1 ((𝑇𝐿𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870   · cmul 10876  cle 11010  NrmCVeccnv 28946  BaseSetcba 28948  normCVcnmcv 28952   LnOp clno 29102   BLnOp cblo 29104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-grpo 28855  df-gid 28856  df-ginv 28857  df-ablo 28907  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962  df-lno 29106  df-nmoo 29107  df-blo 29108  df-0o 29109
This theorem is referenced by:  ipblnfi  29217
  Copyright terms: Public domain W3C validator