![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blo3i | Structured version Visualization version GIF version |
Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isblo3i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
isblo3i.m | ⊢ 𝑀 = (normCV‘𝑈) |
isblo3i.n | ⊢ 𝑁 = (normCV‘𝑊) |
isblo3i.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
isblo3i.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
isblo3i.u | ⊢ 𝑈 ∈ NrmCVec |
isblo3i.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
blo3i | ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7442 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 · (𝑀‘𝑦)) = (𝐴 · (𝑀‘𝑦))) | |
2 | 1 | breq2d 5161 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
3 | 2 | ralbidv 3177 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
4 | 3 | rspcev 3623 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) |
5 | isblo3i.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | isblo3i.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑈) | |
7 | isblo3i.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑊) | |
8 | isblo3i.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | isblo3i.5 | . . . . 5 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
10 | isblo3i.u | . . . . 5 ⊢ 𝑈 ∈ NrmCVec | |
11 | isblo3i.w | . . . . 5 ⊢ 𝑊 ∈ NrmCVec | |
12 | 5, 6, 7, 8, 9, 10, 11 | isblo3i 30843 | . . . 4 ⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)))) |
13 | 12 | biimpri 228 | . . 3 ⊢ ((𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
14 | 4, 13 | sylan2 593 | . 2 ⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) → 𝑇 ∈ 𝐵) |
15 | 14 | 3impb 1114 | 1 ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 class class class wbr 5149 ‘cfv 6566 (class class class)co 7435 ℝcr 11158 · cmul 11164 ≤ cle 11300 NrmCVeccnv 30626 BaseSetcba 30628 normCVcnmcv 30632 LnOp clno 30782 BLnOp cblo 30784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-map 8873 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-grpo 30535 df-gid 30536 df-ginv 30537 df-ablo 30587 df-vc 30601 df-nv 30634 df-va 30637 df-ba 30638 df-sm 30639 df-0v 30640 df-nmcv 30642 df-lno 30786 df-nmoo 30787 df-blo 30788 df-0o 30789 |
This theorem is referenced by: ipblnfi 30897 |
Copyright terms: Public domain | W3C validator |