| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > blo3i | Structured version Visualization version GIF version | ||
| Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isblo3i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| isblo3i.m | ⊢ 𝑀 = (normCV‘𝑈) |
| isblo3i.n | ⊢ 𝑁 = (normCV‘𝑊) |
| isblo3i.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| isblo3i.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
| isblo3i.u | ⊢ 𝑈 ∈ NrmCVec |
| isblo3i.w | ⊢ 𝑊 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| blo3i | ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7401 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 · (𝑀‘𝑦)) = (𝐴 · (𝑀‘𝑦))) | |
| 2 | 1 | breq2d 5127 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
| 3 | 2 | ralbidv 3158 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
| 4 | 3 | rspcev 3597 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) |
| 5 | isblo3i.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | isblo3i.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑈) | |
| 7 | isblo3i.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑊) | |
| 8 | isblo3i.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 9 | isblo3i.5 | . . . . 5 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
| 10 | isblo3i.u | . . . . 5 ⊢ 𝑈 ∈ NrmCVec | |
| 11 | isblo3i.w | . . . . 5 ⊢ 𝑊 ∈ NrmCVec | |
| 12 | 5, 6, 7, 8, 9, 10, 11 | isblo3i 30737 | . . . 4 ⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)))) |
| 13 | 12 | biimpri 228 | . . 3 ⊢ ((𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
| 14 | 4, 13 | sylan2 593 | . 2 ⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) → 𝑇 ∈ 𝐵) |
| 15 | 14 | 3impb 1114 | 1 ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 ℝcr 11085 · cmul 11091 ≤ cle 11227 NrmCVeccnv 30520 BaseSetcba 30522 normCVcnmcv 30526 LnOp clno 30676 BLnOp cblo 30678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-sup 9411 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-z 12546 df-uz 12810 df-rp 12966 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-grpo 30429 df-gid 30430 df-ginv 30431 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 df-lno 30680 df-nmoo 30681 df-blo 30682 df-0o 30683 |
| This theorem is referenced by: ipblnfi 30791 |
| Copyright terms: Public domain | W3C validator |