![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > blo3i | Structured version Visualization version GIF version |
Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isblo3i.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
isblo3i.m | ⊢ 𝑀 = (normCV‘𝑈) |
isblo3i.n | ⊢ 𝑁 = (normCV‘𝑊) |
isblo3i.4 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
isblo3i.5 | ⊢ 𝐵 = (𝑈 BLnOp 𝑊) |
isblo3i.u | ⊢ 𝑈 ∈ NrmCVec |
isblo3i.w | ⊢ 𝑊 ∈ NrmCVec |
Ref | Expression |
---|---|
blo3i | ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7433 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 · (𝑀‘𝑦)) = (𝐴 · (𝑀‘𝑦))) | |
2 | 1 | breq2d 5164 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
3 | 2 | ralbidv 3175 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) |
4 | 3 | rspcev 3611 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) |
5 | isblo3i.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | isblo3i.m | . . . . 5 ⊢ 𝑀 = (normCV‘𝑈) | |
7 | isblo3i.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑊) | |
8 | isblo3i.4 | . . . . 5 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
9 | isblo3i.5 | . . . . 5 ⊢ 𝐵 = (𝑈 BLnOp 𝑊) | |
10 | isblo3i.u | . . . . 5 ⊢ 𝑈 ∈ NrmCVec | |
11 | isblo3i.w | . . . . 5 ⊢ 𝑊 ∈ NrmCVec | |
12 | 5, 6, 7, 8, 9, 10, 11 | isblo3i 30631 | . . . 4 ⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)))) |
13 | 12 | biimpri 227 | . . 3 ⊢ ((𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
14 | 4, 13 | sylan2 591 | . 2 ⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦)))) → 𝑇 ∈ 𝐵) |
15 | 14 | 3impb 1112 | 1 ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ∃wrex 3067 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ℝcr 11145 · cmul 11151 ≤ cle 11287 NrmCVeccnv 30414 BaseSetcba 30416 normCVcnmcv 30420 LnOp clno 30570 BLnOp cblo 30572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-seq 14007 df-exp 14067 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-grpo 30323 df-gid 30324 df-ginv 30325 df-ablo 30375 df-vc 30389 df-nv 30422 df-va 30425 df-ba 30426 df-sm 30427 df-0v 30428 df-nmcv 30430 df-lno 30574 df-nmoo 30575 df-blo 30576 df-0o 30577 |
This theorem is referenced by: ipblnfi 30685 |
Copyright terms: Public domain | W3C validator |