MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blo3i Structured version   Visualization version   GIF version

Theorem blo3i 30632
Description: Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isblo3i.1 𝑋 = (BaseSet‘𝑈)
isblo3i.m 𝑀 = (normCV𝑈)
isblo3i.n 𝑁 = (normCV𝑊)
isblo3i.4 𝐿 = (𝑈 LnOp 𝑊)
isblo3i.5 𝐵 = (𝑈 BLnOp 𝑊)
isblo3i.u 𝑈 ∈ NrmCVec
isblo3i.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
blo3i ((𝑇𝐿𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → 𝑇𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑀   𝑦,𝑁   𝑦,𝑇   𝑦,𝑈   𝑦,𝑊   𝑦,𝑋
Allowed substitution hint:   𝐿(𝑦)

Proof of Theorem blo3i
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 7433 . . . . . 6 (𝑥 = 𝐴 → (𝑥 · (𝑀𝑦)) = (𝐴 · (𝑀𝑦)))
21breq2d 5164 . . . . 5 (𝑥 = 𝐴 → ((𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))))
32ralbidv 3175 . . . 4 (𝑥 = 𝐴 → (∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)) ↔ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))))
43rspcev 3611 . . 3 ((𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦)))
5 isblo3i.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
6 isblo3i.m . . . . 5 𝑀 = (normCV𝑈)
7 isblo3i.n . . . . 5 𝑁 = (normCV𝑊)
8 isblo3i.4 . . . . 5 𝐿 = (𝑈 LnOp 𝑊)
9 isblo3i.5 . . . . 5 𝐵 = (𝑈 BLnOp 𝑊)
10 isblo3i.u . . . . 5 𝑈 ∈ NrmCVec
11 isblo3i.w . . . . 5 𝑊 ∈ NrmCVec
125, 6, 7, 8, 9, 10, 11isblo3i 30631 . . . 4 (𝑇𝐵 ↔ (𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))))
1312biimpri 227 . . 3 ((𝑇𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝑥 · (𝑀𝑦))) → 𝑇𝐵)
144, 13sylan2 591 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦)))) → 𝑇𝐵)
15143impb 1112 1 ((𝑇𝐿𝐴 ∈ ℝ ∧ ∀𝑦𝑋 (𝑁‘(𝑇𝑦)) ≤ (𝐴 · (𝑀𝑦))) → 𝑇𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3058  wrex 3067   class class class wbr 5152  cfv 6553  (class class class)co 7426  cr 11145   · cmul 11151  cle 11287  NrmCVeccnv 30414  BaseSetcba 30416  normCVcnmcv 30420   LnOp clno 30570   BLnOp cblo 30572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-grpo 30323  df-gid 30324  df-ginv 30325  df-ablo 30375  df-vc 30389  df-nv 30422  df-va 30425  df-ba 30426  df-sm 30427  df-0v 30428  df-nmcv 30430  df-lno 30574  df-nmoo 30575  df-blo 30576  df-0o 30577
This theorem is referenced by:  ipblnfi  30685
  Copyright terms: Public domain W3C validator