![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsup | Structured version Visualization version GIF version |
Description: A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz 44802). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminflimsup.1 | β’ (π β π β β€) |
climliminflimsup.2 | β’ π = (β€β₯βπ) |
climliminflimsup.3 | β’ (π β πΉ:πβΆβ) |
Ref | Expression |
---|---|
climliminflimsup | β’ (π β (πΉ β dom β β ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsup.2 | . . . 4 β’ π = (β€β₯βπ) | |
2 | climliminflimsup.1 | . . . . 5 β’ (π β π β β€) | |
3 | 2 | adantr 479 | . . . 4 β’ ((π β§ πΉ β dom β ) β π β β€) |
4 | climliminflimsup.3 | . . . . . . 7 β’ (π β πΉ:πβΆβ) | |
5 | 2, 1, 4 | climliminf 44820 | . . . . . 6 β’ (π β (πΉ β dom β β πΉ β (lim infβπΉ))) |
6 | 5 | biimpd 228 | . . . . 5 β’ (π β (πΉ β dom β β πΉ β (lim infβπΉ))) |
7 | 6 | imp 405 | . . . 4 β’ ((π β§ πΉ β dom β ) β πΉ β (lim infβπΉ)) |
8 | 4 | adantr 479 | . . . . 5 β’ ((π β§ πΉ β dom β ) β πΉ:πβΆβ) |
9 | 8 | ffvelcdmda 7085 | . . . 4 β’ (((π β§ πΉ β dom β ) β§ π β π) β (πΉβπ) β β) |
10 | 1, 3, 7, 9 | climrecl 15531 | . . 3 β’ ((π β§ πΉ β dom β ) β (lim infβπΉ) β β) |
11 | simpr 483 | . . . . 5 β’ ((π β§ πΉ β dom β ) β πΉ β dom β ) | |
12 | 11 | limsupcld 44704 | . . . 4 β’ ((π β§ πΉ β dom β ) β (lim supβπΉ) β β*) |
13 | 3, 1, 8, 11 | climliminflimsupd 44815 | . . . . 5 β’ ((π β§ πΉ β dom β ) β (lim infβπΉ) = (lim supβπΉ)) |
14 | 13 | eqcomd 2736 | . . . 4 β’ ((π β§ πΉ β dom β ) β (lim supβπΉ) = (lim infβπΉ)) |
15 | 12, 14 | xreqled 44338 | . . 3 β’ ((π β§ πΉ β dom β ) β (lim supβπΉ) β€ (lim infβπΉ)) |
16 | 10, 15 | jca 510 | . 2 β’ ((π β§ πΉ β dom β ) β ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) |
17 | 2 | adantr 479 | . . 3 β’ ((π β§ ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) β π β β€) |
18 | 4 | adantr 479 | . . 3 β’ ((π β§ ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) β πΉ:πβΆβ) |
19 | simprl 767 | . . 3 β’ ((π β§ ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) β (lim infβπΉ) β β) | |
20 | simprr 769 | . . 3 β’ ((π β§ ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) β (lim supβπΉ) β€ (lim infβπΉ)) | |
21 | 17, 1, 18, 19, 20 | liminflimsupclim 44821 | . 2 β’ ((π β§ ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ))) β πΉ β dom β ) |
22 | 16, 21 | impbida 797 | 1 β’ (π β (πΉ β dom β β ((lim infβπΉ) β β β§ (lim supβπΉ) β€ (lim infβπΉ)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 class class class wbr 5147 dom cdm 5675 βΆwf 6538 βcfv 6542 βcr 11111 β€ cle 11253 β€cz 12562 β€β₯cuz 12826 lim supclsp 15418 β cli 15432 lim infclsi 44765 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-ioo 13332 df-ico 13334 df-fz 13489 df-fzo 13632 df-fl 13761 df-ceil 13762 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-liminf 44766 |
This theorem is referenced by: climliminflimsup2 44823 climliminflimsup3 44824 |
Copyright terms: Public domain | W3C validator |