Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climliminflimsup | Structured version Visualization version GIF version |
Description: A sequence of real numbers converges if and only if its inferior limit is real and it is greater than or equal to its superior limit (in such a case, they are actually equal, see liminfgelimsupuz 42891). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climliminflimsup.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climliminflimsup.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climliminflimsup.3 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
climliminflimsup | ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climliminflimsup.2 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climliminflimsup.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | 2 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
4 | climliminflimsup.3 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
5 | 2, 1, 4 | climliminf 42909 | . . . . . 6 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ (lim inf‘𝐹))) |
6 | 5 | biimpd 232 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ → 𝐹 ⇝ (lim inf‘𝐹))) |
7 | 6 | imp 410 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ (lim inf‘𝐹)) |
8 | 4 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:𝑍⟶ℝ) |
9 | 8 | ffvelrnda 6861 | . . . 4 ⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
10 | 1, 3, 7, 9 | climrecl 15030 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) ∈ ℝ) |
11 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) | |
12 | 11 | limsupcld 42793 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) ∈ ℝ*) |
13 | 3, 1, 8, 11 | climliminflimsupd 42904 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
14 | 13 | eqcomd 2744 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) = (lim inf‘𝐹)) |
15 | 12, 14 | xreqled 42427 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
16 | 10, 15 | jca 515 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) |
17 | 2 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝑀 ∈ ℤ) |
18 | 4 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹:𝑍⟶ℝ) |
19 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim inf‘𝐹) ∈ ℝ) | |
20 | simprr 773 | . . 3 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) | |
21 | 17, 1, 18, 19, 20 | liminflimsupclim 42910 | . 2 ⊢ ((𝜑 ∧ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹))) → 𝐹 ∈ dom ⇝ ) |
22 | 16, 21 | impbida 801 | 1 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ ((lim inf‘𝐹) ∈ ℝ ∧ (lim sup‘𝐹) ≤ (lim inf‘𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 class class class wbr 5030 dom cdm 5525 ⟶wf 6335 ‘cfv 6339 ℝcr 10614 ≤ cle 10754 ℤcz 12062 ℤ≥cuz 12324 lim supclsp 14917 ⇝ cli 14931 lim infclsi 42854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-ioo 12825 df-ico 12827 df-fz 12982 df-fzo 13125 df-fl 13253 df-ceil 13254 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-limsup 14918 df-clim 14935 df-rlim 14936 df-liminf 42855 |
This theorem is referenced by: climliminflimsup2 42912 climliminflimsup3 42913 |
Copyright terms: Public domain | W3C validator |