| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk5lem | Structured version Visualization version GIF version | ||
| Description: Lemma for numclwwlk5 30363. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| numclwwlk5lem | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eleq2i 2823 | . . . 4 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
| 3 | clwwlknon2num 30080 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | |
| 4 | 2, 3 | sylan2b 594 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
| 6 | oveq1 7353 | . . . . 5 ⊢ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) |
| 8 | 2prm 16600 | . . . . . . . . 9 ⊢ 2 ∈ ℙ | |
| 9 | nn0z 12490 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 10 | modprm1div 16706 | . . . . . . . . 9 ⊢ ((2 ∈ ℙ ∧ 𝐾 ∈ ℤ) → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) |
| 12 | 11 | biimprd 248 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 13 | 12 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 15 | 14 | imp 406 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → (𝐾 mod 2) = 1) |
| 16 | 7, 15 | eqtrd 2766 | . . 3 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1) |
| 17 | 16 | ex 412 | . 2 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| 18 | 5, 17 | mpancom 688 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 1c1 11004 − cmin 11341 2c2 12177 ℕ0cn0 12378 ℤcz 12465 mod cmo 13770 ♯chash 14234 ∥ cdvds 16160 ℙcprime 16579 Vtxcvtx 28972 RegUSGraph crusgr 29533 ClWWalksNOncclwwlknon 30062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-dju 9791 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-xnn0 12452 df-z 12466 df-uz 12730 df-rp 12888 df-xadd 13009 df-fz 13405 df-fzo 13552 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-hash 14235 df-word 14418 df-lsw 14467 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-prm 16580 df-edg 29024 df-uhgr 29034 df-ushgr 29035 df-upgr 29058 df-umgr 29059 df-uspgr 29126 df-usgr 29127 df-nbgr 29309 df-vtxdg 29443 df-rgr 29534 df-rusgr 29535 df-clwwlk 29957 df-clwwlkn 30000 df-clwwlknon 30063 |
| This theorem is referenced by: numclwwlk5 30363 |
| Copyright terms: Public domain | W3C validator |