| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > numclwwlk5lem | Structured version Visualization version GIF version | ||
| Description: Lemma for numclwwlk5 30317. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) |
| Ref | Expression |
|---|---|
| numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| numclwwlk5lem | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eleq2i 2820 | . . . 4 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
| 3 | clwwlknon2num 30034 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | |
| 4 | 2, 3 | sylan2b 594 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
| 5 | 4 | 3adant3 1132 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
| 6 | oveq1 7394 | . . . . 5 ⊢ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) | |
| 7 | 6 | ad2antrr 726 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) |
| 8 | 2prm 16662 | . . . . . . . . 9 ⊢ 2 ∈ ℙ | |
| 9 | nn0z 12554 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
| 10 | modprm1div 16768 | . . . . . . . . 9 ⊢ ((2 ∈ ℙ ∧ 𝐾 ∈ ℤ) → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) | |
| 11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) |
| 12 | 11 | biimprd 248 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 13 | 12 | 3ad2ant3 1135 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 14 | 13 | adantl 481 | . . . . 5 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
| 15 | 14 | imp 406 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → (𝐾 mod 2) = 1) |
| 16 | 7, 15 | eqtrd 2764 | . . 3 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1) |
| 17 | 16 | ex 412 | . 2 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| 18 | 5, 17 | mpancom 688 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 1c1 11069 − cmin 11405 2c2 12241 ℕ0cn0 12442 ℤcz 12529 mod cmo 13831 ♯chash 14295 ∥ cdvds 16222 ℙcprime 16641 Vtxcvtx 28923 RegUSGraph crusgr 29484 ClWWalksNOncclwwlknon 30016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-word 14479 df-lsw 14528 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-dvds 16223 df-prm 16642 df-edg 28975 df-uhgr 28985 df-ushgr 28986 df-upgr 29009 df-umgr 29010 df-uspgr 29077 df-usgr 29078 df-nbgr 29260 df-vtxdg 29394 df-rgr 29485 df-rusgr 29486 df-clwwlk 29911 df-clwwlkn 29954 df-clwwlknon 30017 |
| This theorem is referenced by: numclwwlk5 30317 |
| Copyright terms: Public domain | W3C validator |