Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > numclwwlk5lem | Structured version Visualization version GIF version |
Description: Lemma for numclwwlk5 28760. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) |
Ref | Expression |
---|---|
numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
numclwwlk5lem | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
3 | clwwlknon2num 28477 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | |
4 | 2, 3 | sylan2b 594 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
5 | 4 | 3adant3 1131 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
6 | oveq1 7274 | . . . . 5 ⊢ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) | |
7 | 6 | ad2antrr 723 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) |
8 | 2prm 16407 | . . . . . . . . 9 ⊢ 2 ∈ ℙ | |
9 | nn0z 12353 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
10 | modprm1div 16508 | . . . . . . . . 9 ⊢ ((2 ∈ ℙ ∧ 𝐾 ∈ ℤ) → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) | |
11 | 8, 9, 10 | sylancr 587 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) |
12 | 11 | biimprd 247 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
13 | 12 | 3ad2ant3 1134 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
14 | 13 | adantl 482 | . . . . 5 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
15 | 14 | imp 407 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → (𝐾 mod 2) = 1) |
16 | 7, 15 | eqtrd 2778 | . . 3 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1) |
17 | 16 | ex 413 | . 2 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
18 | 5, 17 | mpancom 685 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5073 ‘cfv 6426 (class class class)co 7267 1c1 10882 − cmin 11215 2c2 12038 ℕ0cn0 12243 ℤcz 12329 mod cmo 13599 ♯chash 14054 ∥ cdvds 15973 ℙcprime 16386 Vtxcvtx 27376 RegUSGraph crusgr 27933 ClWWalksNOncclwwlknon 28459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-oadd 8288 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-n0 12244 df-xnn0 12316 df-z 12330 df-uz 12593 df-rp 12741 df-xadd 12859 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-exp 13793 df-hash 14055 df-word 14228 df-lsw 14276 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-dvds 15974 df-prm 16387 df-edg 27428 df-uhgr 27438 df-ushgr 27439 df-upgr 27462 df-umgr 27463 df-uspgr 27530 df-usgr 27531 df-nbgr 27710 df-vtxdg 27843 df-rgr 27934 df-rusgr 27935 df-clwwlk 28354 df-clwwlkn 28397 df-clwwlknon 28460 |
This theorem is referenced by: numclwwlk5 28760 |
Copyright terms: Public domain | W3C validator |