![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk5lem | Structured version Visualization version GIF version |
Description: Lemma for numclwwlk5 30237. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) |
Ref | Expression |
---|---|
numclwwlk3.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
numclwwlk5lem | β’ ((πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0) β (2 β₯ (πΎ β 1) β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk3.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | 1 | eleq2i 2817 | . . . 4 β’ (π β π β π β (VtxβπΊ)) |
3 | clwwlknon2num 29954 | . . . 4 β’ ((πΊ RegUSGraph πΎ β§ π β (VtxβπΊ)) β (β―β(π(ClWWalksNOnβπΊ)2)) = πΎ) | |
4 | 2, 3 | sylan2b 592 | . . 3 β’ ((πΊ RegUSGraph πΎ β§ π β π) β (β―β(π(ClWWalksNOnβπΊ)2)) = πΎ) |
5 | 4 | 3adant3 1129 | . 2 β’ ((πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0) β (β―β(π(ClWWalksNOnβπΊ)2)) = πΎ) |
6 | oveq1 7420 | . . . . 5 β’ ((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = (πΎ mod 2)) | |
7 | 6 | ad2antrr 724 | . . . 4 β’ ((((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β§ (πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0)) β§ 2 β₯ (πΎ β 1)) β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = (πΎ mod 2)) |
8 | 2prm 16657 | . . . . . . . . 9 β’ 2 β β | |
9 | nn0z 12608 | . . . . . . . . 9 β’ (πΎ β β0 β πΎ β β€) | |
10 | modprm1div 16760 | . . . . . . . . 9 β’ ((2 β β β§ πΎ β β€) β ((πΎ mod 2) = 1 β 2 β₯ (πΎ β 1))) | |
11 | 8, 9, 10 | sylancr 585 | . . . . . . . 8 β’ (πΎ β β0 β ((πΎ mod 2) = 1 β 2 β₯ (πΎ β 1))) |
12 | 11 | biimprd 247 | . . . . . . 7 β’ (πΎ β β0 β (2 β₯ (πΎ β 1) β (πΎ mod 2) = 1)) |
13 | 12 | 3ad2ant3 1132 | . . . . . 6 β’ ((πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0) β (2 β₯ (πΎ β 1) β (πΎ mod 2) = 1)) |
14 | 13 | adantl 480 | . . . . 5 β’ (((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β§ (πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0)) β (2 β₯ (πΎ β 1) β (πΎ mod 2) = 1)) |
15 | 14 | imp 405 | . . . 4 β’ ((((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β§ (πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0)) β§ 2 β₯ (πΎ β 1)) β (πΎ mod 2) = 1) |
16 | 7, 15 | eqtrd 2765 | . . 3 β’ ((((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β§ (πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0)) β§ 2 β₯ (πΎ β 1)) β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = 1) |
17 | 16 | ex 411 | . 2 β’ (((β―β(π(ClWWalksNOnβπΊ)2)) = πΎ β§ (πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0)) β (2 β₯ (πΎ β 1) β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = 1)) |
18 | 5, 17 | mpancom 686 | 1 β’ ((πΊ RegUSGraph πΎ β§ π β π β§ πΎ β β0) β (2 β₯ (πΎ β 1) β ((β―β(π(ClWWalksNOnβπΊ)2)) mod 2) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5144 βcfv 6543 (class class class)co 7413 1c1 11134 β cmin 11469 2c2 12292 β0cn0 12497 β€cz 12583 mod cmo 13861 β―chash 14316 β₯ cdvds 16225 βcprime 16636 Vtxcvtx 28848 RegUSGraph crusgr 29409 ClWWalksNOncclwwlknon 29936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9460 df-inf 9461 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-rp 13002 df-xadd 13120 df-fz 13512 df-fzo 13655 df-fl 13784 df-mod 13862 df-seq 13994 df-exp 14054 df-hash 14317 df-word 14492 df-lsw 14540 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-dvds 16226 df-prm 16637 df-edg 28900 df-uhgr 28910 df-ushgr 28911 df-upgr 28934 df-umgr 28935 df-uspgr 29002 df-usgr 29003 df-nbgr 29185 df-vtxdg 29319 df-rgr 29410 df-rusgr 29411 df-clwwlk 29831 df-clwwlkn 29874 df-clwwlknon 29937 |
This theorem is referenced by: numclwwlk5 30237 |
Copyright terms: Public domain | W3C validator |