![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk5lem | Structured version Visualization version GIF version |
Description: Lemma for numclwwlk5 30218. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) (Revised by AV, 7-Mar-2022.) |
Ref | Expression |
---|---|
numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
numclwwlk5lem | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eleq2i 2821 | . . . 4 ⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
3 | clwwlknon2num 29935 | . . . 4 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ (Vtx‘𝐺)) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) | |
4 | 2, 3 | sylan2b 592 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
5 | 4 | 3adant3 1129 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾) |
6 | oveq1 7433 | . . . . 5 ⊢ ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) | |
7 | 6 | ad2antrr 724 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = (𝐾 mod 2)) |
8 | 2prm 16670 | . . . . . . . . 9 ⊢ 2 ∈ ℙ | |
9 | nn0z 12621 | . . . . . . . . 9 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℤ) | |
10 | modprm1div 16773 | . . . . . . . . 9 ⊢ ((2 ∈ ℙ ∧ 𝐾 ∈ ℤ) → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) | |
11 | 8, 9, 10 | sylancr 585 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → ((𝐾 mod 2) = 1 ↔ 2 ∥ (𝐾 − 1))) |
12 | 11 | biimprd 247 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ0 → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
13 | 12 | 3ad2ant3 1132 | . . . . . 6 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
14 | 13 | adantl 480 | . . . . 5 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → (𝐾 mod 2) = 1)) |
15 | 14 | imp 405 | . . . 4 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → (𝐾 mod 2) = 1) |
16 | 7, 15 | eqtrd 2768 | . . 3 ⊢ ((((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) ∧ 2 ∥ (𝐾 − 1)) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1) |
17 | 16 | ex 411 | . 2 ⊢ (((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) = 𝐾 ∧ (𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0)) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
18 | 5, 17 | mpancom 686 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝐾 ∈ ℕ0) → (2 ∥ (𝐾 − 1) → ((♯‘(𝑋(ClWWalksNOn‘𝐺)2)) mod 2) = 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 1c1 11147 − cmin 11482 2c2 12305 ℕ0cn0 12510 ℤcz 12596 mod cmo 13874 ♯chash 14329 ∥ cdvds 16238 ℙcprime 16649 Vtxcvtx 28829 RegUSGraph crusgr 29390 ClWWalksNOncclwwlknon 29917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-2o 8494 df-oadd 8497 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-rp 13015 df-xadd 13133 df-fz 13525 df-fzo 13668 df-fl 13797 df-mod 13875 df-seq 14007 df-exp 14067 df-hash 14330 df-word 14505 df-lsw 14553 df-cj 15086 df-re 15087 df-im 15088 df-sqrt 15222 df-abs 15223 df-dvds 16239 df-prm 16650 df-edg 28881 df-uhgr 28891 df-ushgr 28892 df-upgr 28915 df-umgr 28916 df-uspgr 28983 df-usgr 28984 df-nbgr 29166 df-vtxdg 29300 df-rgr 29391 df-rusgr 29392 df-clwwlk 29812 df-clwwlkn 29855 df-clwwlknon 29918 |
This theorem is referenced by: numclwwlk5 30218 |
Copyright terms: Public domain | W3C validator |