Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quartlem4 | Structured version Visualization version GIF version |
Description: Closure lemmas for quart 26011. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
quart.m0 | ⊢ (𝜑 → 𝑀 ≠ 0) |
quart.i | ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) |
quart.j | ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) |
Ref | Expression |
---|---|
quartlem4 | ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | quart.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
7 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
8 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
9 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
10 | quart.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
11 | quart.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
12 | quart.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
13 | quart.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
14 | quart.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
15 | quart.t0 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) | |
16 | 2, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15 | quartlem3 26009 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
17 | 16 | simp2d 1142 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 17 | sqrtcld 15149 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
19 | 2cnd 12051 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 17 | sqsqrtd 15151 | . . . . . 6 ⊢ (𝜑 → ((√‘𝑀)↑2) = 𝑀) |
21 | quart.m0 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) | |
22 | 20, 21 | eqnetrd 3011 | . . . . 5 ⊢ (𝜑 → ((√‘𝑀)↑2) ≠ 0) |
23 | sqne0 13843 | . . . . . 6 ⊢ ((√‘𝑀) ∈ ℂ → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) | |
24 | 18, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ≠ 0) |
26 | 2ne0 12077 | . . . . 5 ⊢ 2 ≠ 0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
28 | 18, 19, 25, 27 | divne0d 11767 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ≠ 0) |
29 | 1, 28 | eqnetrd 3011 | . 2 ⊢ (𝜑 → 𝑆 ≠ 0) |
30 | quart.i | . . 3 ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) | |
31 | 16 | simp1d 1141 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
32 | 31 | sqcld 13862 | . . . . . . 7 ⊢ (𝜑 → (𝑆↑2) ∈ ℂ) |
33 | 32 | negcld 11319 | . . . . . 6 ⊢ (𝜑 → -(𝑆↑2) ∈ ℂ) |
34 | 2, 3, 4, 5, 7, 8, 9 | quart1cl 26004 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
35 | 34 | simp1d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
36 | 35 | halfcld 12218 | . . . . . 6 ⊢ (𝜑 → (𝑃 / 2) ∈ ℂ) |
37 | 33, 36 | subcld 11332 | . . . . 5 ⊢ (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ) |
38 | 34 | simp2d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
39 | 4cn 12058 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℂ) |
41 | 4ne0 12081 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
42 | 41 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ≠ 0) |
43 | 38, 40, 42 | divcld 11751 | . . . . . 6 ⊢ (𝜑 → (𝑄 / 4) ∈ ℂ) |
44 | 43, 31, 29 | divcld 11751 | . . . . 5 ⊢ (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ) |
45 | 37, 44 | addcld 10994 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
46 | 45 | sqrtcld 15149 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
47 | 30, 46 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
48 | quart.j | . . 3 ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) | |
49 | 37, 44 | subcld 11332 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
50 | 49 | sqrtcld 15149 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
51 | 48, 50 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
52 | 29, 47, 51 | 3jca 1127 | 1 ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 − cmin 11205 -cneg 11206 / cdiv 11632 2c2 12028 3c3 12029 4c4 12030 5c5 12031 6c6 12032 7c7 12033 8c8 12034 ;cdc 12437 ↑cexp 13782 √csqrt 14944 ↑𝑐ccxp 25711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-addf 10950 ax-mulf 10951 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ioc 13084 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 df-sin 15779 df-cos 15780 df-pi 15782 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-starv 16977 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-unif 16985 df-hom 16986 df-cco 16987 df-rest 17133 df-topn 17134 df-0g 17152 df-gsum 17153 df-topgen 17154 df-pt 17155 df-prds 17158 df-xrs 17213 df-qtop 17218 df-imas 17219 df-xps 17221 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-fbas 20594 df-fg 20595 df-cnfld 20598 df-top 22043 df-topon 22060 df-topsp 22082 df-bases 22096 df-cld 22170 df-ntr 22171 df-cls 22172 df-nei 22249 df-lp 22287 df-perf 22288 df-cn 22378 df-cnp 22379 df-haus 22466 df-tx 22713 df-hmeo 22906 df-fil 22997 df-fm 23089 df-flim 23090 df-flf 23091 df-xms 23473 df-ms 23474 df-tms 23475 df-cncf 24041 df-limc 25030 df-dv 25031 df-log 25712 df-cxp 25713 |
This theorem is referenced by: quart 26011 |
Copyright terms: Public domain | W3C validator |