Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quartlem4 | Structured version Visualization version GIF version |
Description: Closure lemmas for quart 25916. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
quart.m0 | ⊢ (𝜑 → 𝑀 ≠ 0) |
quart.i | ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) |
quart.j | ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) |
Ref | Expression |
---|---|
quartlem4 | ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | quart.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
7 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
8 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
9 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
10 | quart.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
11 | quart.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
12 | quart.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
13 | quart.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
14 | quart.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
15 | quart.t0 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) | |
16 | 2, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15 | quartlem3 25914 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
17 | 16 | simp2d 1141 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 17 | sqrtcld 15077 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
19 | 2cnd 11981 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 17 | sqsqrtd 15079 | . . . . . 6 ⊢ (𝜑 → ((√‘𝑀)↑2) = 𝑀) |
21 | quart.m0 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) | |
22 | 20, 21 | eqnetrd 3010 | . . . . 5 ⊢ (𝜑 → ((√‘𝑀)↑2) ≠ 0) |
23 | sqne0 13771 | . . . . . 6 ⊢ ((√‘𝑀) ∈ ℂ → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) | |
24 | 18, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ≠ 0) |
26 | 2ne0 12007 | . . . . 5 ⊢ 2 ≠ 0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
28 | 18, 19, 25, 27 | divne0d 11697 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ≠ 0) |
29 | 1, 28 | eqnetrd 3010 | . 2 ⊢ (𝜑 → 𝑆 ≠ 0) |
30 | quart.i | . . 3 ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) | |
31 | 16 | simp1d 1140 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
32 | 31 | sqcld 13790 | . . . . . . 7 ⊢ (𝜑 → (𝑆↑2) ∈ ℂ) |
33 | 32 | negcld 11249 | . . . . . 6 ⊢ (𝜑 → -(𝑆↑2) ∈ ℂ) |
34 | 2, 3, 4, 5, 7, 8, 9 | quart1cl 25909 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
35 | 34 | simp1d 1140 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
36 | 35 | halfcld 12148 | . . . . . 6 ⊢ (𝜑 → (𝑃 / 2) ∈ ℂ) |
37 | 33, 36 | subcld 11262 | . . . . 5 ⊢ (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ) |
38 | 34 | simp2d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
39 | 4cn 11988 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℂ) |
41 | 4ne0 12011 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
42 | 41 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ≠ 0) |
43 | 38, 40, 42 | divcld 11681 | . . . . . 6 ⊢ (𝜑 → (𝑄 / 4) ∈ ℂ) |
44 | 43, 31, 29 | divcld 11681 | . . . . 5 ⊢ (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ) |
45 | 37, 44 | addcld 10925 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
46 | 45 | sqrtcld 15077 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
47 | 30, 46 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
48 | quart.j | . . 3 ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) | |
49 | 37, 44 | subcld 11262 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
50 | 49 | sqrtcld 15077 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
51 | 48, 50 | eqeltrd 2839 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
52 | 29, 47, 51 | 3jca 1126 | 1 ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 3c3 11959 4c4 11960 5c5 11961 6c6 11962 7c7 11963 8c8 11964 ;cdc 12366 ↑cexp 13710 √csqrt 14872 ↑𝑐ccxp 25616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-cxp 25618 |
This theorem is referenced by: quart 25916 |
Copyright terms: Public domain | W3C validator |