MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem4 Structured version   Visualization version   GIF version

Theorem quartlem4 26795
Description: Closure lemmas for quart 26796. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a (𝜑𝐴 ∈ ℂ)
quart.b (𝜑𝐵 ∈ ℂ)
quart.c (𝜑𝐶 ∈ ℂ)
quart.d (𝜑𝐷 ∈ ℂ)
quart.x (𝜑𝑋 ∈ ℂ)
quart.e (𝜑𝐸 = -(𝐴 / 4))
quart.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quart.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
quart.w (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
quart.s (𝜑𝑆 = ((√‘𝑀) / 2))
quart.m (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
quart.t (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
quart.t0 (𝜑𝑇 ≠ 0)
quart.m0 (𝜑𝑀 ≠ 0)
quart.i (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
quart.j (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
Assertion
Ref Expression
quartlem4 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))

Proof of Theorem quartlem4
StepHypRef Expression
1 quart.s . . 3 (𝜑𝑆 = ((√‘𝑀) / 2))
2 quart.a . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 quart.b . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 quart.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 quart.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
6 quart.e . . . . . . 7 (𝜑𝐸 = -(𝐴 / 4))
7 quart.p . . . . . . 7 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
8 quart.q . . . . . . 7 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
9 quart.r . . . . . . 7 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
10 quart.u . . . . . . 7 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
11 quart.v . . . . . . 7 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
12 quart.w . . . . . . 7 (𝜑𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3)))))
13 quart.m . . . . . . 7 (𝜑𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3))
14 quart.t . . . . . . 7 (𝜑𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3)))
15 quart.t0 . . . . . . 7 (𝜑𝑇 ≠ 0)
162, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15quartlem3 26794 . . . . . 6 (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ))
1716simp2d 1143 . . . . 5 (𝜑𝑀 ∈ ℂ)
1817sqrtcld 15344 . . . 4 (𝜑 → (√‘𝑀) ∈ ℂ)
19 2cnd 12200 . . . 4 (𝜑 → 2 ∈ ℂ)
2017sqsqrtd 15346 . . . . . 6 (𝜑 → ((√‘𝑀)↑2) = 𝑀)
21 quart.m0 . . . . . 6 (𝜑𝑀 ≠ 0)
2220, 21eqnetrd 2995 . . . . 5 (𝜑 → ((√‘𝑀)↑2) ≠ 0)
23 sqne0 14027 . . . . . 6 ((√‘𝑀) ∈ ℂ → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0))
2418, 23syl 17 . . . . 5 (𝜑 → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0))
2522, 24mpbid 232 . . . 4 (𝜑 → (√‘𝑀) ≠ 0)
26 2ne0 12226 . . . . 5 2 ≠ 0
2726a1i 11 . . . 4 (𝜑 → 2 ≠ 0)
2818, 19, 25, 27divne0d 11910 . . 3 (𝜑 → ((√‘𝑀) / 2) ≠ 0)
291, 28eqnetrd 2995 . 2 (𝜑𝑆 ≠ 0)
30 quart.i . . 3 (𝜑𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))))
3116simp1d 1142 . . . . . . . 8 (𝜑𝑆 ∈ ℂ)
3231sqcld 14048 . . . . . . 7 (𝜑 → (𝑆↑2) ∈ ℂ)
3332negcld 11456 . . . . . 6 (𝜑 → -(𝑆↑2) ∈ ℂ)
342, 3, 4, 5, 7, 8, 9quart1cl 26789 . . . . . . . 8 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
3534simp1d 1142 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
3635halfcld 12363 . . . . . 6 (𝜑 → (𝑃 / 2) ∈ ℂ)
3733, 36subcld 11469 . . . . 5 (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ)
3834simp2d 1143 . . . . . . 7 (𝜑𝑄 ∈ ℂ)
39 4cn 12207 . . . . . . . 8 4 ∈ ℂ
4039a1i 11 . . . . . . 7 (𝜑 → 4 ∈ ℂ)
41 4ne0 12230 . . . . . . . 8 4 ≠ 0
4241a1i 11 . . . . . . 7 (𝜑 → 4 ≠ 0)
4338, 40, 42divcld 11894 . . . . . 6 (𝜑 → (𝑄 / 4) ∈ ℂ)
4443, 31, 29divcld 11894 . . . . 5 (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ)
4537, 44addcld 11128 . . . 4 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ)
4645sqrtcld 15344 . . 3 (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))) ∈ ℂ)
4730, 46eqeltrd 2831 . 2 (𝜑𝐼 ∈ ℂ)
48 quart.j . . 3 (𝜑𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))))
4937, 44subcld 11469 . . . 4 (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ)
5049sqrtcld 15344 . . 3 (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))) ∈ ℂ)
5148, 50eqeltrd 2831 . 2 (𝜑𝐽 ∈ ℂ)
5229, 47, 513jca 1128 1 (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cfv 6481  (class class class)co 7346  cc 11001  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  cmin 11341  -cneg 11342   / cdiv 11771  2c2 12177  3c3 12178  4c4 12179  5c5 12180  6c6 12181  7c7 12182  8c8 12183  cdc 12585  cexp 13965  csqrt 15137  𝑐ccxp 26489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cxp 26491
This theorem is referenced by:  quart  26796
  Copyright terms: Public domain W3C validator