| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > quartlem4 | Structured version Visualization version GIF version | ||
| Description: Closure lemmas for quart 26787. (Contributed by Mario Carneiro, 7-May-2015.) |
| Ref | Expression |
|---|---|
| quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
| quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
| quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
| quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
| quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
| quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
| quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
| quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
| quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
| quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
| quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
| quart.m0 | ⊢ (𝜑 → 𝑀 ≠ 0) |
| quart.i | ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) |
| quart.j | ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) |
| Ref | Expression |
|---|---|
| quartlem4 | ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
| 2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 6 | quart.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
| 7 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
| 8 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
| 9 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
| 10 | quart.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
| 11 | quart.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
| 12 | quart.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
| 13 | quart.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
| 14 | quart.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
| 15 | quart.t0 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) | |
| 16 | 2, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15 | quartlem3 26785 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
| 17 | 16 | simp2d 1143 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 18 | 17 | sqrtcld 15365 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
| 19 | 2cnd 12224 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 20 | 17 | sqsqrtd 15367 | . . . . . 6 ⊢ (𝜑 → ((√‘𝑀)↑2) = 𝑀) |
| 21 | quart.m0 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) | |
| 22 | 20, 21 | eqnetrd 2992 | . . . . 5 ⊢ (𝜑 → ((√‘𝑀)↑2) ≠ 0) |
| 23 | sqne0 14048 | . . . . . 6 ⊢ ((√‘𝑀) ∈ ℂ → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) | |
| 24 | 18, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) |
| 25 | 22, 24 | mpbid 232 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ≠ 0) |
| 26 | 2ne0 12250 | . . . . 5 ⊢ 2 ≠ 0 | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
| 28 | 18, 19, 25, 27 | divne0d 11934 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ≠ 0) |
| 29 | 1, 28 | eqnetrd 2992 | . 2 ⊢ (𝜑 → 𝑆 ≠ 0) |
| 30 | quart.i | . . 3 ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) | |
| 31 | 16 | simp1d 1142 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
| 32 | 31 | sqcld 14069 | . . . . . . 7 ⊢ (𝜑 → (𝑆↑2) ∈ ℂ) |
| 33 | 32 | negcld 11480 | . . . . . 6 ⊢ (𝜑 → -(𝑆↑2) ∈ ℂ) |
| 34 | 2, 3, 4, 5, 7, 8, 9 | quart1cl 26780 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
| 35 | 34 | simp1d 1142 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 36 | 35 | halfcld 12387 | . . . . . 6 ⊢ (𝜑 → (𝑃 / 2) ∈ ℂ) |
| 37 | 33, 36 | subcld 11493 | . . . . 5 ⊢ (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ) |
| 38 | 34 | simp2d 1143 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 39 | 4cn 12231 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
| 40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℂ) |
| 41 | 4ne0 12254 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
| 42 | 41 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ≠ 0) |
| 43 | 38, 40, 42 | divcld 11918 | . . . . . 6 ⊢ (𝜑 → (𝑄 / 4) ∈ ℂ) |
| 44 | 43, 31, 29 | divcld 11918 | . . . . 5 ⊢ (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ) |
| 45 | 37, 44 | addcld 11153 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
| 46 | 45 | sqrtcld 15365 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
| 47 | 30, 46 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 48 | quart.j | . . 3 ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) | |
| 49 | 37, 44 | subcld 11493 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
| 50 | 49 | sqrtcld 15365 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
| 51 | 48, 50 | eqeltrd 2828 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 52 | 29, 47, 51 | 3jca 1128 | 1 ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 -cneg 11366 / cdiv 11795 2c2 12201 3c3 12202 4c4 12203 5c5 12204 6c6 12205 7c7 12206 8c8 12207 ;cdc 12609 ↑cexp 13986 √csqrt 15158 ↑𝑐ccxp 26480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 df-cxp 26482 |
| This theorem is referenced by: quart 26787 |
| Copyright terms: Public domain | W3C validator |