Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > quartlem4 | Structured version Visualization version GIF version |
Description: Closure lemmas for quart 25992. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
quart.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
quart.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
quart.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
quart.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
quart.x | ⊢ (𝜑 → 𝑋 ∈ ℂ) |
quart.e | ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) |
quart.p | ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) |
quart.q | ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) |
quart.r | ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) |
quart.u | ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) |
quart.v | ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) |
quart.w | ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) |
quart.s | ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) |
quart.m | ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) |
quart.t | ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) |
quart.t0 | ⊢ (𝜑 → 𝑇 ≠ 0) |
quart.m0 | ⊢ (𝜑 → 𝑀 ≠ 0) |
quart.i | ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) |
quart.j | ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) |
Ref | Expression |
---|---|
quartlem4 | ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quart.s | . . 3 ⊢ (𝜑 → 𝑆 = ((√‘𝑀) / 2)) | |
2 | quart.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | quart.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | quart.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
5 | quart.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
6 | quart.e | . . . . . . 7 ⊢ (𝜑 → 𝐸 = -(𝐴 / 4)) | |
7 | quart.p | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2)))) | |
8 | quart.q | . . . . . . 7 ⊢ (𝜑 → 𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))) | |
9 | quart.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))) | |
10 | quart.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 = ((𝑃↑2) + (;12 · 𝑅))) | |
11 | quart.v | . . . . . . 7 ⊢ (𝜑 → 𝑉 = ((-(2 · (𝑃↑3)) − (;27 · (𝑄↑2))) + (;72 · (𝑃 · 𝑅)))) | |
12 | quart.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 = (√‘((𝑉↑2) − (4 · (𝑈↑3))))) | |
13 | quart.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 = -((((2 · 𝑃) + 𝑇) + (𝑈 / 𝑇)) / 3)) | |
14 | quart.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 = (((𝑉 + 𝑊) / 2)↑𝑐(1 / 3))) | |
15 | quart.t0 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ≠ 0) | |
16 | 2, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15 | quartlem3 25990 | . . . . . 6 ⊢ (𝜑 → (𝑆 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑇 ∈ ℂ)) |
17 | 16 | simp2d 1141 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
18 | 17 | sqrtcld 15130 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ∈ ℂ) |
19 | 2cnd 12034 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) | |
20 | 17 | sqsqrtd 15132 | . . . . . 6 ⊢ (𝜑 → ((√‘𝑀)↑2) = 𝑀) |
21 | quart.m0 | . . . . . 6 ⊢ (𝜑 → 𝑀 ≠ 0) | |
22 | 20, 21 | eqnetrd 3012 | . . . . 5 ⊢ (𝜑 → ((√‘𝑀)↑2) ≠ 0) |
23 | sqne0 13824 | . . . . . 6 ⊢ ((√‘𝑀) ∈ ℂ → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) | |
24 | 18, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (((√‘𝑀)↑2) ≠ 0 ↔ (√‘𝑀) ≠ 0)) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (√‘𝑀) ≠ 0) |
26 | 2ne0 12060 | . . . . 5 ⊢ 2 ≠ 0 | |
27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → 2 ≠ 0) |
28 | 18, 19, 25, 27 | divne0d 11750 | . . 3 ⊢ (𝜑 → ((√‘𝑀) / 2) ≠ 0) |
29 | 1, 28 | eqnetrd 3012 | . 2 ⊢ (𝜑 → 𝑆 ≠ 0) |
30 | quart.i | . . 3 ⊢ (𝜑 → 𝐼 = (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)))) | |
31 | 16 | simp1d 1140 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ ℂ) |
32 | 31 | sqcld 13843 | . . . . . . 7 ⊢ (𝜑 → (𝑆↑2) ∈ ℂ) |
33 | 32 | negcld 11302 | . . . . . 6 ⊢ (𝜑 → -(𝑆↑2) ∈ ℂ) |
34 | 2, 3, 4, 5, 7, 8, 9 | quart1cl 25985 | . . . . . . . 8 ⊢ (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ)) |
35 | 34 | simp1d 1140 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ ℂ) |
36 | 35 | halfcld 12201 | . . . . . 6 ⊢ (𝜑 → (𝑃 / 2) ∈ ℂ) |
37 | 33, 36 | subcld 11315 | . . . . 5 ⊢ (𝜑 → (-(𝑆↑2) − (𝑃 / 2)) ∈ ℂ) |
38 | 34 | simp2d 1141 | . . . . . . 7 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
39 | 4cn 12041 | . . . . . . . 8 ⊢ 4 ∈ ℂ | |
40 | 39 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ∈ ℂ) |
41 | 4ne0 12064 | . . . . . . . 8 ⊢ 4 ≠ 0 | |
42 | 41 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 4 ≠ 0) |
43 | 38, 40, 42 | divcld 11734 | . . . . . 6 ⊢ (𝜑 → (𝑄 / 4) ∈ ℂ) |
44 | 43, 31, 29 | divcld 11734 | . . . . 5 ⊢ (𝜑 → ((𝑄 / 4) / 𝑆) ∈ ℂ) |
45 | 37, 44 | addcld 10978 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
46 | 45 | sqrtcld 15130 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) + ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
47 | 30, 46 | eqeltrd 2840 | . 2 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
48 | quart.j | . . 3 ⊢ (𝜑 → 𝐽 = (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)))) | |
49 | 37, 44 | subcld 11315 | . . . 4 ⊢ (𝜑 → ((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆)) ∈ ℂ) |
50 | 49 | sqrtcld 15130 | . . 3 ⊢ (𝜑 → (√‘((-(𝑆↑2) − (𝑃 / 2)) − ((𝑄 / 4) / 𝑆))) ∈ ℂ) |
51 | 48, 50 | eqeltrd 2840 | . 2 ⊢ (𝜑 → 𝐽 ∈ ℂ) |
52 | 29, 47, 51 | 3jca 1126 | 1 ⊢ (𝜑 → (𝑆 ≠ 0 ∧ 𝐼 ∈ ℂ ∧ 𝐽 ∈ ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 -cneg 11189 / cdiv 11615 2c2 12011 3c3 12012 4c4 12013 5c5 12014 6c6 12015 7c7 12016 8c8 12017 ;cdc 12419 ↑cexp 13763 √csqrt 14925 ↑𝑐ccxp 25692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-fi 9131 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-ioo 13065 df-ioc 13066 df-ico 13067 df-icc 13068 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-fac 13969 df-bc 13998 df-hash 14026 df-shft 14759 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-limsup 15161 df-clim 15178 df-rlim 15179 df-sum 15379 df-ef 15758 df-sin 15760 df-cos 15761 df-pi 15763 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-starv 16958 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-unif 16966 df-hom 16967 df-cco 16968 df-rest 17114 df-topn 17115 df-0g 17133 df-gsum 17134 df-topgen 17135 df-pt 17136 df-prds 17139 df-xrs 17194 df-qtop 17199 df-imas 17200 df-xps 17202 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-mulg 18682 df-cntz 18904 df-cmn 19369 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-fbas 20575 df-fg 20576 df-cnfld 20579 df-top 22024 df-topon 22041 df-topsp 22063 df-bases 22077 df-cld 22151 df-ntr 22152 df-cls 22153 df-nei 22230 df-lp 22268 df-perf 22269 df-cn 22359 df-cnp 22360 df-haus 22447 df-tx 22694 df-hmeo 22887 df-fil 22978 df-fm 23070 df-flim 23071 df-flf 23072 df-xms 23454 df-ms 23455 df-tms 23456 df-cncf 24022 df-limc 25011 df-dv 25012 df-log 25693 df-cxp 25694 |
This theorem is referenced by: quart 25992 |
Copyright terms: Public domain | W3C validator |