MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2dv Structured version   Visualization version   GIF version

Theorem prodeq2dv 15871
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
prodeq2dv (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2dv
StepHypRef Expression
1 prodeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 3140 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32prodeq2d 15870 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cprod 15853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-seq 13970  df-prod 15854
This theorem is referenced by:  prodeq2sdv  15872  2cprodeq2dv  15873  prodeq12dv  15874  prodeq12rdv  15875  fprodf1o  15894  fprodss  15896  fprodsplit  15914  fprod2dlem  15928  risefallfac  15972  risefacfac  15983  fallfacfwd  15984  fproddvdsd  16283  prmgapprmo  17002  breprexplema  34171  breprexp  34174  breprexpnat  34175  vtsprod  34180  circlemethnat  34182  circlevma  34183  circlemethhgt  34184  hgt750lemg  34195  bcprod  35241  iprodgam  35245  aks4d1p1p1  41442  aks4d1p1p2  41449  aks4d1p1  41455  aks4d1p9  41467  mccllem  44866  fprodcncf  45169  etransclem4  45507  etransclem13  45516  etransclem23  45526  etransclem31  45534  etransclem35  45538  hoicvrrex  45825  hsphoidmvle2  45854  hsphoidmvle  45855  hoidmvlelem2  45865  hoidmvlelem3  45866  hoidmvlelem4  45867  ovnhoilem1  45870  ovnhoilem2  45871  ovnhoi  45872  ovnlecvr2  45879  ovncvr2  45880  hspmbllem1  45895  hspmbl  45898  ovnovollem1  45925  vonioolem1  45949  vonicclem1  45952  vonn0icc  45957  vonn0ioo2  45959  vonsn  45960  vonn0icc2  45961
  Copyright terms: Public domain W3C validator