MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2dv Structured version   Visualization version   GIF version

Theorem prodeq2dv 15958
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
prodeq2dv (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2dv
StepHypRef Expression
1 prodeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 3146 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32prodeq2d 15957 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cprod 15939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-prod 15940
This theorem is referenced by:  prodeq2sdvOLD  15960  2cprodeq2dv  15961  prodeq12dv  15962  prodeq12rdv  15963  fprodf1o  15982  fprodss  15984  fprodsplit  16002  fprod2dlem  16016  risefallfac  16060  risefacfac  16071  fallfacfwd  16072  fproddvdsd  16372  prmgapprmo  17100  breprexplema  34645  breprexp  34648  breprexpnat  34649  vtsprod  34654  circlemethnat  34656  circlevma  34657  circlemethhgt  34658  hgt750lemg  34669  bcprod  35738  iprodgam  35742  aks4d1p1p1  42064  aks4d1p1p2  42071  aks4d1p1  42077  aks4d1p9  42089  mccllem  45612  fprodcncf  45915  etransclem4  46253  etransclem13  46262  etransclem23  46272  etransclem31  46280  etransclem35  46284  hoicvrrex  46571  hsphoidmvle2  46600  hsphoidmvle  46601  hoidmvlelem2  46611  hoidmvlelem3  46612  hoidmvlelem4  46613  ovnhoilem1  46616  ovnhoilem2  46617  ovnhoi  46618  ovnlecvr2  46625  ovncvr2  46626  hspmbllem1  46641  hspmbl  46644  ovnovollem1  46671  vonioolem1  46695  vonicclem1  46698  vonn0icc  46703  vonn0ioo2  46705  vonsn  46706  vonn0icc2  46707
  Copyright terms: Public domain W3C validator