MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2dv Structured version   Visualization version   GIF version

Theorem prodeq2dv 15836
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
prodeq2dv (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2dv
StepHypRef Expression
1 prodeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 3125 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32prodeq2d 15835 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cprod 15817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-seq 13916  df-prod 15818
This theorem is referenced by:  prodeq2sdvOLD  15838  2cprodeq2dv  15839  prodeq12dv  15840  prodeq12rdv  15841  fprodf1o  15860  fprodss  15862  fprodsplit  15880  fprod2dlem  15894  risefallfac  15938  risefacfac  15949  fallfacfwd  15950  fproddvdsd  16253  prmgapprmo  16981  breprexplema  34715  breprexp  34718  breprexpnat  34719  vtsprod  34724  circlemethnat  34726  circlevma  34727  circlemethhgt  34728  hgt750lemg  34739  bcprod  35854  iprodgam  35858  aks4d1p1p1  42229  aks4d1p1p2  42236  aks4d1p1  42242  aks4d1p9  42254  mccllem  45759  fprodcncf  46060  etransclem4  46398  etransclem13  46407  etransclem23  46417  etransclem31  46425  etransclem35  46429  hoicvrrex  46716  hsphoidmvle2  46745  hsphoidmvle  46746  hoidmvlelem2  46756  hoidmvlelem3  46757  hoidmvlelem4  46758  ovnhoilem1  46761  ovnhoilem2  46762  ovnhoi  46763  ovnlecvr2  46770  ovncvr2  46771  hspmbllem1  46786  hspmbl  46789  ovnovollem1  46816  vonioolem1  46840  vonicclem1  46843  vonn0icc  46848  vonn0ioo2  46850  vonsn  46851  vonn0icc2  46852
  Copyright terms: Public domain W3C validator