MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodeq2dv Structured version   Visualization version   GIF version

Theorem prodeq2dv 15269
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.)
Hypothesis
Ref Expression
prodeq2dv.1 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
prodeq2dv (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)

Proof of Theorem prodeq2dv
StepHypRef Expression
1 prodeq2dv.1 . . 3 ((𝜑𝑘𝐴) → 𝐵 = 𝐶)
21ralrimiva 3180 . 2 (𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)
32prodeq2d 15268 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  cprod 15251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-seq 13362  df-prod 15252
This theorem is referenced by:  prodeq2sdv  15270  2cprodeq2dv  15271  prodeq12dv  15272  prodeq12rdv  15273  fprodf1o  15292  fprodss  15294  fprodsplit  15312  fprod2dlem  15326  risefallfac  15370  risefacfac  15381  fallfacfwd  15382  fproddvdsd  15676  prmgapprmo  16390  breprexplema  31894  breprexp  31897  breprexpnat  31898  vtsprod  31903  circlemethnat  31905  circlevma  31906  circlemethhgt  31907  hgt750lemg  31918  bcprod  32963  iprodgam  32967  mccllem  41867  fprodcncf  42173  etransclem4  42513  etransclem13  42522  etransclem23  42532  etransclem31  42540  etransclem35  42544  hoicvrrex  42828  hsphoidmvle2  42857  hsphoidmvle  42858  hoidmvlelem2  42868  hoidmvlelem3  42869  hoidmvlelem4  42870  ovnhoilem1  42873  ovnhoilem2  42874  ovnhoi  42875  ovnlecvr2  42882  ovncvr2  42883  hspmbllem1  42898  hspmbl  42901  ovnovollem1  42928  vonioolem1  42952  vonicclem1  42955  vonn0icc  42960  vonn0ioo2  42962  vonsn  42963  vonn0icc2  42964
  Copyright terms: Public domain W3C validator