![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzosump1 | Structured version Visualization version GIF version |
Description: Separate out the last term in a finite sum. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
fsumm1.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
fsumm1.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) |
fsumm1.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fzosump1 | ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumm1.1 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
2 | eluzelz 12872 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
4 | fzoval 13675 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1))) |
6 | 5 | sumeq1d 15689 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴) |
7 | 6 | oveq1d 7441 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵) = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
8 | fsumm1.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ) | |
9 | fsumm1.3 | . . 3 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
10 | 1, 8, 9 | fsumm1 15739 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...(𝑁 − 1))𝐴 + 𝐵)) |
11 | fzval3 13743 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) | |
12 | 3, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) = (𝑀..^(𝑁 + 1))) |
13 | 12 | sumeq1d 15689 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴) |
14 | 7, 10, 13 | 3eqtr2rd 2775 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀..^(𝑁 + 1))𝐴 = (Σ𝑘 ∈ (𝑀..^𝑁)𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ‘cfv 6553 (class class class)co 7426 ℂcc 11146 1c1 11149 + caddc 11151 − cmin 11484 ℤcz 12598 ℤ≥cuz 12862 ...cfz 13526 ..^cfzo 13669 Σcsu 15674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-sup 9475 df-oi 9543 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-rp 13017 df-fz 13527 df-fzo 13670 df-seq 14009 df-exp 14069 df-hash 14332 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-clim 15474 df-sum 15675 |
This theorem is referenced by: dchrisumlem2 27451 signsvfn 34255 itgspltprt 45414 |
Copyright terms: Public domain | W3C validator |