![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mhplss | Structured version Visualization version GIF version |
Description: Homogeneous polynomials form a linear subspace of the polynomials. (Contributed by SN, 25-Sep-2023.) |
Ref | Expression |
---|---|
mhplss.h | β’ π» = (πΌ mHomP π ) |
mhplss.p | β’ π = (πΌ mPoly π ) |
mhplss.i | β’ (π β πΌ β π) |
mhplss.r | β’ (π β π β Ring) |
mhplss.n | β’ (π β π β β0) |
Ref | Expression |
---|---|
mhplss | β’ (π β (π»βπ) β (LSubSpβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mhplss.h | . . 3 β’ π» = (πΌ mHomP π ) | |
2 | mhplss.p | . . 3 β’ π = (πΌ mPoly π ) | |
3 | mhplss.i | . . 3 β’ (π β πΌ β π) | |
4 | mhplss.r | . . . 4 β’ (π β π β Ring) | |
5 | ringgrp 20134 | . . . 4 β’ (π β Ring β π β Grp) | |
6 | 4, 5 | syl 17 | . . 3 β’ (π β π β Grp) |
7 | mhplss.n | . . 3 β’ (π β π β β0) | |
8 | 1, 2, 3, 6, 7 | mhpsubg 21917 | . 2 β’ (π β (π»βπ) β (SubGrpβπ)) |
9 | eqid 2730 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
10 | eqid 2730 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
11 | 3 | adantr 479 | . . . 4 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β πΌ β π) |
12 | 4 | adantr 479 | . . . 4 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β π β Ring) |
13 | 7 | adantr 479 | . . . 4 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β π β β0) |
14 | 2, 3, 4 | mplsca 21793 | . . . . . . . 8 β’ (π β π = (Scalarβπ)) |
15 | 14 | fveq2d 6896 | . . . . . . 7 β’ (π β (Baseβπ ) = (Baseβ(Scalarβπ))) |
16 | 15 | eleq2d 2817 | . . . . . 6 β’ (π β (π β (Baseβπ ) β π β (Baseβ(Scalarβπ)))) |
17 | 16 | biimpar 476 | . . . . 5 β’ ((π β§ π β (Baseβ(Scalarβπ))) β π β (Baseβπ )) |
18 | 17 | adantrr 713 | . . . 4 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β π β (Baseβπ )) |
19 | simprr 769 | . . . 4 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β π β (π»βπ)) | |
20 | 1, 2, 9, 10, 11, 12, 13, 18, 19 | mhpvscacl 21918 | . . 3 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (π»βπ))) β (π( Β·π βπ)π) β (π»βπ)) |
21 | 20 | ralrimivva 3198 | . 2 β’ (π β βπ β (Baseβ(Scalarβπ))βπ β (π»βπ)(π( Β·π βπ)π) β (π»βπ)) |
22 | 2 | mpllmod 21798 | . . . 4 β’ ((πΌ β π β§ π β Ring) β π β LMod) |
23 | 3, 4, 22 | syl2anc 582 | . . 3 β’ (π β π β LMod) |
24 | eqid 2730 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
25 | eqid 2730 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
26 | eqid 2730 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
27 | eqid 2730 | . . . 4 β’ (LSubSpβπ) = (LSubSpβπ) | |
28 | 24, 25, 26, 9, 27 | islss4 20719 | . . 3 β’ (π β LMod β ((π»βπ) β (LSubSpβπ) β ((π»βπ) β (SubGrpβπ) β§ βπ β (Baseβ(Scalarβπ))βπ β (π»βπ)(π( Β·π βπ)π) β (π»βπ)))) |
29 | 23, 28 | syl 17 | . 2 β’ (π β ((π»βπ) β (LSubSpβπ) β ((π»βπ) β (SubGrpβπ) β§ βπ β (Baseβ(Scalarβπ))βπ β (π»βπ)(π( Β·π βπ)π) β (π»βπ)))) |
30 | 8, 21, 29 | mpbir2and 709 | 1 β’ (π β (π»βπ) β (LSubSpβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 βcfv 6544 (class class class)co 7413 β0cn0 12478 Basecbs 17150 Scalarcsca 17206 Β·π cvsca 17207 Grpcgrp 18857 SubGrpcsubg 19038 Ringcrg 20129 LModclmod 20616 LSubSpclss 20688 mPoly cmpl 21680 mHomP cmhp 21893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8151 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-ixp 8896 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fsupp 9366 df-sup 9441 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-uz 12829 df-fz 13491 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-hom 17227 df-cco 17228 df-0g 17393 df-prds 17399 df-pws 17401 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18860 df-minusg 18861 df-sbg 18862 df-subg 19041 df-cmn 19693 df-abl 19694 df-mgp 20031 df-rng 20049 df-ur 20078 df-ring 20131 df-lmod 20618 df-lss 20689 df-psr 21683 df-mpl 21685 df-mhp 21897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |