Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isumneg Structured version   Visualization version   GIF version

Theorem isumneg 43097
Description: Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
isumneg.1 𝑍 = (ℤ𝑀)
isumneg.2 (𝜑𝑀 ∈ ℤ)
isumneg.3 (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℂ)
isumneg.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumneg.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumneg.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumneg (𝜑 → Σ𝑘𝑍 -𝐴 = -Σ𝑘𝑍 𝐴)
Distinct variable groups:   𝜑,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumneg
StepHypRef Expression
1 isumneg.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
21mulm1d 11410 . . . 4 ((𝜑𝑘𝑍) → (-1 · 𝐴) = -𝐴)
32eqcomd 2745 . . 3 ((𝜑𝑘𝑍) → -𝐴 = (-1 · 𝐴))
43sumeq2dv 15396 . 2 (𝜑 → Σ𝑘𝑍 -𝐴 = Σ𝑘𝑍 (-1 · 𝐴))
5 isumneg.1 . . 3 𝑍 = (ℤ𝑀)
6 isumneg.2 . . 3 (𝜑𝑀 ∈ ℤ)
7 isumneg.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
8 isumneg.6 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
9 1cnd 10954 . . . 4 (𝜑 → 1 ∈ ℂ)
109negcld 11302 . . 3 (𝜑 → -1 ∈ ℂ)
115, 6, 7, 1, 8, 10isummulc2 15455 . 2 (𝜑 → (-1 · Σ𝑘𝑍 𝐴) = Σ𝑘𝑍 (-1 · 𝐴))
12 isumneg.3 . . 3 (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℂ)
1312mulm1d 11410 . 2 (𝜑 → (-1 · Σ𝑘𝑍 𝐴) = -Σ𝑘𝑍 𝐴)
144, 11, 133eqtr2d 2785 1 (𝜑 → Σ𝑘𝑍 -𝐴 = -Σ𝑘𝑍 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  dom cdm 5588  cfv 6430  (class class class)co 7268  cc 10853  1c1 10856   + caddc 10858   · cmul 10860  -cneg 11189  cz 12302  cuz 12564  seqcseq 13702  cli 15174  Σcsu 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator