MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamgulm Structured version   Visualization version   GIF version

Theorem lgamgulm 27058
Description: The series 𝐺 is uniformly convergent on the compact region 𝑈, which describes a circle of radius 𝑅 with holes of size 1 / 𝑅 around the poles of the gamma function. (Contributed by Mario Carneiro, 3-Jul-2017.)
Hypotheses
Ref Expression
lgamgulm.r (𝜑𝑅 ∈ ℕ)
lgamgulm.u 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
lgamgulm.g 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
Assertion
Ref Expression
lgamgulm (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
Distinct variable groups:   𝑘,𝑚,𝑥,𝑧,𝑅   𝑈,𝑚,𝑧   𝜑,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑘)   𝑈(𝑥,𝑘)   𝐺(𝑥,𝑧,𝑘,𝑚)

Proof of Theorem lgamgulm
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 lgamgulm.r . . 3 (𝜑𝑅 ∈ ℕ)
2 lgamgulm.u . . 3 𝑈 = {𝑥 ∈ ℂ ∣ ((abs‘𝑥) ≤ 𝑅 ∧ ∀𝑘 ∈ ℕ0 (1 / 𝑅) ≤ (abs‘(𝑥 + 𝑘)))}
3 lgamgulm.g . . 3 𝐺 = (𝑚 ∈ ℕ ↦ (𝑧𝑈 ↦ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1)))))
4 eqid 2726 . . 3 (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π)))) = (𝑚 ∈ ℕ ↦ if((2 · 𝑅) ≤ 𝑚, (𝑅 · ((2 · (𝑅 + 1)) / (𝑚↑2))), ((𝑅 · (log‘((𝑚 + 1) / 𝑚))) + ((log‘((𝑅 + 1) · 𝑚)) + π))))
51, 2, 3, 4lgamgulmlem6 27057 . 2 (𝜑 → (seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈) ∧ (seq1( ∘f + , 𝐺)(⇝𝑢𝑈)(𝑧𝑈 ↦ 1) → ∃𝑟 ∈ ℝ ∀𝑧𝑈 (abs‘1) ≤ 𝑟)))
65simpld 493 1 (𝜑 → seq1( ∘f + , 𝐺) ∈ dom (⇝𝑢𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wral 3051  wrex 3060  {crab 3420  ifcif 4524   class class class wbr 5144  cmpt 5227  dom cdm 5673  cfv 6544  (class class class)co 7414  f cof 7678  cc 11145  cr 11146  1c1 11148   + caddc 11150   · cmul 11152  cle 11288  cmin 11483   / cdiv 11910  cn 12256  2c2 12311  0cn0 12516  seqcseq 14013  cexp 14073  abscabs 15232  πcpi 16061  𝑢culm 26400  logclog 26576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-inf2 9675  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225  ax-addf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-se 5629  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-2o 8487  df-oadd 8490  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9397  df-fi 9445  df-sup 9476  df-inf 9477  df-oi 9544  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-div 11911  df-nn 12257  df-2 12319  df-3 12320  df-4 12321  df-5 12322  df-6 12323  df-7 12324  df-8 12325  df-9 12326  df-n0 12517  df-z 12603  df-dec 12722  df-uz 12867  df-q 12977  df-rp 13021  df-xneg 13138  df-xadd 13139  df-xmul 13140  df-ioo 13374  df-ioc 13375  df-ico 13376  df-icc 13377  df-fz 13531  df-fzo 13674  df-fl 13804  df-mod 13882  df-seq 14014  df-exp 14074  df-fac 14284  df-bc 14313  df-hash 14341  df-shft 15065  df-cj 15097  df-re 15098  df-im 15099  df-sqrt 15233  df-abs 15234  df-limsup 15466  df-clim 15483  df-rlim 15484  df-sum 15684  df-ef 16062  df-sin 16064  df-cos 16065  df-tan 16066  df-pi 16067  df-struct 17142  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-ress 17236  df-plusg 17272  df-mulr 17273  df-starv 17274  df-sca 17275  df-vsca 17276  df-ip 17277  df-tset 17278  df-ple 17279  df-ds 17281  df-unif 17282  df-hom 17283  df-cco 17284  df-rest 17430  df-topn 17431  df-0g 17449  df-gsum 17450  df-topgen 17451  df-pt 17452  df-prds 17455  df-xrs 17510  df-qtop 17515  df-imas 17516  df-xps 17518  df-mre 17592  df-mrc 17593  df-acs 17595  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19774  df-psmet 21329  df-xmet 21330  df-met 21331  df-bl 21332  df-mopn 21333  df-fbas 21334  df-fg 21335  df-cnfld 21338  df-top 22882  df-topon 22899  df-topsp 22921  df-bases 22935  df-cld 23009  df-ntr 23010  df-cls 23011  df-nei 23088  df-lp 23126  df-perf 23127  df-cn 23217  df-cnp 23218  df-haus 23305  df-cmp 23377  df-tx 23552  df-hmeo 23745  df-fil 23836  df-fm 23928  df-flim 23929  df-flf 23930  df-xms 24312  df-ms 24313  df-tms 24314  df-cncf 24884  df-limc 25881  df-dv 25882  df-ulm 26401  df-log 26578  df-cxp 26579
This theorem is referenced by:  lgamgulm2  27059
  Copyright terms: Public domain W3C validator