| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem28 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41683. Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpg.s | ⊢ − = (-g‘𝑈) |
| mapdpg.z | ⊢ 0 = (0g‘𝑈) |
| mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
| mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
| mapdpglem26.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem26.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem26.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem26.o | ⊢ 𝑂 = (0g‘𝐴) |
| mapdpglem28.ve | ⊢ (𝜑 → 𝑣 ∈ 𝐵) |
| mapdpglem28.u1 | ⊢ (𝜑 → ℎ = (𝑢 · 𝑖)) |
| mapdpglem28.u2 | ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
| Ref | Expression |
|---|---|
| mapdpglem28 | ⊢ (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem28.u2 | . 2 ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) | |
| 2 | mapdpglem28.u1 | . . 3 ⊢ (𝜑 → ℎ = (𝑢 · 𝑖)) | |
| 3 | 2 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝐺𝑅(𝑢 · 𝑖))) |
| 4 | mapdpg.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
| 5 | mapdpglem26.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 6 | eqid 2734 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 7 | eqid 2734 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 8 | mapdpg.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
| 9 | mapdpg.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 10 | mapdpg.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdpg.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 9, 10, 11 | lcdlmod 41569 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 13 | mapdpglem28.ve | . . . 4 ⊢ (𝜑 → 𝑣 ∈ 𝐵) | |
| 14 | mapdpg.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 15 | mapdpglem26.a | . . . . 5 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 16 | mapdpglem26.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 17 | 9, 14, 15, 16, 10, 6, 7, 11 | lcdsbase 41577 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 18 | 13, 17 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝑣 ∈ (Base‘(Scalar‘𝐶))) |
| 19 | mapdpg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 20 | mapdpgem25.i1 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
| 21 | 20 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑖 ∈ 𝐹) |
| 22 | 4, 5, 6, 7, 8, 12, 18, 19, 21 | lmodsubdi 20886 | . 2 ⊢ (𝜑 → (𝑣 · (𝐺𝑅𝑖)) = ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖))) |
| 23 | 1, 3, 22 | 3eqtr3rd 2778 | 1 ⊢ (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∖ cdif 3928 {csn 4606 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Scalarcsca 17277 ·𝑠 cvsca 17278 0gc0g 17456 -gcsg 18923 LSpanclspn 20938 HLchlt 39326 LHypclh 39961 DVecHcdvh 41055 LCDualclcd 41563 mapdcmpd 41601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-riotaBAD 38929 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-undef 8280 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-0g 17458 df-mre 17601 df-mrc 17602 df-acs 17604 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19623 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-dvr 20370 df-nzr 20482 df-rlreg 20663 df-domn 20664 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lvec 21071 df-lsatoms 38952 df-lshyp 38953 df-lcv 38995 df-lfl 39034 df-lkr 39062 df-ldual 39100 df-oposet 39152 df-ol 39154 df-oml 39155 df-covers 39242 df-ats 39243 df-atl 39274 df-cvlat 39298 df-hlat 39327 df-llines 39475 df-lplanes 39476 df-lvols 39477 df-lines 39478 df-psubsp 39480 df-pmap 39481 df-padd 39773 df-lhyp 39965 df-laut 39966 df-ldil 40081 df-ltrn 40082 df-trl 40136 df-tgrp 40720 df-tendo 40732 df-edring 40734 df-dveca 40980 df-disoa 41006 df-dvech 41056 df-dib 41116 df-dic 41150 df-dih 41206 df-doch 41325 df-djh 41372 df-lcdual 41564 |
| This theorem is referenced by: mapdpglem30 41679 |
| Copyright terms: Public domain | W3C validator |