Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem28 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 39484. Baer p. 45 line 18: "vx'-vy'' = x'-uy''". (Contributed by NM, 22-Mar-2015.) |
Ref | Expression |
---|---|
mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdpg.s | ⊢ − = (-g‘𝑈) |
mapdpg.z | ⊢ 0 = (0g‘𝑈) |
mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) |
mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
mapdpglem26.a | ⊢ 𝐴 = (Scalar‘𝑈) |
mapdpglem26.b | ⊢ 𝐵 = (Base‘𝐴) |
mapdpglem26.t | ⊢ · = ( ·𝑠 ‘𝐶) |
mapdpglem26.o | ⊢ 𝑂 = (0g‘𝐴) |
mapdpglem28.ve | ⊢ (𝜑 → 𝑣 ∈ 𝐵) |
mapdpglem28.u1 | ⊢ (𝜑 → ℎ = (𝑢 · 𝑖)) |
mapdpglem28.u2 | ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
Ref | Expression |
---|---|
mapdpglem28 | ⊢ (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem28.u2 | . 2 ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) | |
2 | mapdpglem28.u1 | . . 3 ⊢ (𝜑 → ℎ = (𝑢 · 𝑖)) | |
3 | 2 | oveq2d 7248 | . 2 ⊢ (𝜑 → (𝐺𝑅ℎ) = (𝐺𝑅(𝑢 · 𝑖))) |
4 | mapdpg.f | . . 3 ⊢ 𝐹 = (Base‘𝐶) | |
5 | mapdpglem26.t | . . 3 ⊢ · = ( ·𝑠 ‘𝐶) | |
6 | eqid 2738 | . . 3 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
7 | eqid 2738 | . . 3 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
8 | mapdpg.r | . . 3 ⊢ 𝑅 = (-g‘𝐶) | |
9 | mapdpg.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
10 | mapdpg.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdpg.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
12 | 9, 10, 11 | lcdlmod 39370 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
13 | mapdpglem28.ve | . . . 4 ⊢ (𝜑 → 𝑣 ∈ 𝐵) | |
14 | mapdpg.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
15 | mapdpglem26.a | . . . . 5 ⊢ 𝐴 = (Scalar‘𝑈) | |
16 | mapdpglem26.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
17 | 9, 14, 15, 16, 10, 6, 7, 11 | lcdsbase 39378 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
18 | 13, 17 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝑣 ∈ (Base‘(Scalar‘𝐶))) |
19 | mapdpg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
20 | mapdpgem25.i1 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
21 | 20 | simpld 498 | . . 3 ⊢ (𝜑 → 𝑖 ∈ 𝐹) |
22 | 4, 5, 6, 7, 8, 12, 18, 19, 21 | lmodsubdi 19981 | . 2 ⊢ (𝜑 → (𝑣 · (𝐺𝑅𝑖)) = ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖))) |
23 | 1, 3, 22 | 3eqtr3rd 2787 | 1 ⊢ (𝜑 → ((𝑣 · 𝐺)𝑅(𝑣 · 𝑖)) = (𝐺𝑅(𝑢 · 𝑖))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∖ cdif 3878 {csn 4556 ‘cfv 6398 (class class class)co 7232 Basecbs 16785 Scalarcsca 16830 ·𝑠 cvsca 16831 0gc0g 16969 -gcsg 18392 LSpanclspn 20033 HLchlt 37128 LHypclh 37762 DVecHcdvh 38856 LCDualclcd 39364 mapdcmpd 39402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-riotaBAD 36731 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-tpos 7989 df-undef 8036 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-sca 16843 df-vsca 16844 df-0g 16971 df-mre 17114 df-mrc 17115 df-acs 17117 df-proset 17827 df-poset 17845 df-plt 17861 df-lub 17877 df-glb 17878 df-join 17879 df-meet 17880 df-p0 17956 df-p1 17957 df-lat 17963 df-clat 18030 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-grp 18393 df-minusg 18394 df-sbg 18395 df-subg 18565 df-cntz 18736 df-oppg 18763 df-lsm 19050 df-cmn 19197 df-abl 19198 df-mgp 19530 df-ur 19542 df-ring 19589 df-oppr 19666 df-dvdsr 19684 df-unit 19685 df-invr 19715 df-dvr 19726 df-drng 19794 df-lmod 19926 df-lss 19994 df-lsp 20034 df-lvec 20165 df-lsatoms 36754 df-lshyp 36755 df-lcv 36797 df-lfl 36836 df-lkr 36864 df-ldual 36902 df-oposet 36954 df-ol 36956 df-oml 36957 df-covers 37044 df-ats 37045 df-atl 37076 df-cvlat 37100 df-hlat 37129 df-llines 37276 df-lplanes 37277 df-lvols 37278 df-lines 37279 df-psubsp 37281 df-pmap 37282 df-padd 37574 df-lhyp 37766 df-laut 37767 df-ldil 37882 df-ltrn 37883 df-trl 37937 df-tgrp 38521 df-tendo 38533 df-edring 38535 df-dveca 38781 df-disoa 38807 df-dvech 38857 df-dib 38917 df-dic 38951 df-dih 39007 df-doch 39126 df-djh 39173 df-lcdual 39365 |
This theorem is referenced by: mapdpglem30 39480 |
Copyright terms: Public domain | W3C validator |