![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8b | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8b.f | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
mapdh8b.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
mapdh8b.a | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = 𝐸) |
mapdh8b.x | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8b.y | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdh8b.yz | ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
mapdh8b.xt | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8b.vw | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
mapdh8b.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
mapdh8b.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
Ref | Expression |
---|---|
mapdh8b | ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdh8b.f | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
16 | mapdh8b.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) | |
17 | mapdh8b.a | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = 𝐸) | |
18 | mapdh8b.x | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
19 | mapdh8b.y | . 2 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
20 | mapdh8b.yz | . 2 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) | |
21 | mapdh8b.xt | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
22 | 1, 2, 14 | dvhlvec 40447 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
23 | 18 | eldifad 3960 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
24 | 19 | eldifad 3960 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
25 | 21 | eldifad 3960 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
26 | mapdh8b.e | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
27 | mapdh8b.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) | |
28 | 3, 6, 22, 23, 24, 25, 26, 27 | lspindp5 41108 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑤})) |
29 | prcom 4736 | . . . . . 6 ⊢ {𝑤, 𝑇} = {𝑇, 𝑤} | |
30 | 29 | fveq2i 6894 | . . . . 5 ⊢ (𝑁‘{𝑤, 𝑇}) = (𝑁‘{𝑇, 𝑤}) |
31 | 30 | eleq2i 2824 | . . . 4 ⊢ (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) ↔ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) |
32 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑈 ∈ LVec) |
33 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
34 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ 𝑉) |
35 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑤 ∈ 𝑉) |
36 | mapdh8b.vw | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) | |
37 | 36 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
38 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) | |
39 | 3, 5, 6, 32, 33, 34, 35, 37, 38 | lspexch 20976 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})) |
40 | 39 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑇, 𝑤}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))) |
41 | 31, 40 | biimtrid 241 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))) |
42 | 28, 41 | mtod 197 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑤, 𝑇})) |
43 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 42 | mapdh8a 41113 | 1 ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∖ cdif 3945 ifcif 4528 {csn 4628 {cpr 4630 〈cotp 4636 ↦ cmpt 5231 ‘cfv 6543 ℩crio 7367 (class class class)co 7412 1st c1st 7977 2nd c2nd 7978 Basecbs 17151 0gc0g 17392 -gcsg 18863 LSpanclspn 20814 LVecclvec 20946 HLchlt 38687 LHypclh 39322 DVecHcdvh 40416 LCDualclcd 40924 mapdcmpd 40962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-riotaBAD 38290 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-undef 8264 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-sca 17220 df-vsca 17221 df-0g 17394 df-mre 17537 df-mrc 17538 df-acs 17540 df-proset 18258 df-poset 18276 df-plt 18293 df-lub 18309 df-glb 18310 df-join 18311 df-meet 18312 df-p0 18388 df-p1 18389 df-lat 18395 df-clat 18462 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-subg 19046 df-cntz 19229 df-oppg 19258 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-oppr 20232 df-dvdsr 20255 df-unit 20256 df-invr 20286 df-dvr 20299 df-drng 20585 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lvec 20947 df-lsatoms 38313 df-lshyp 38314 df-lcv 38356 df-lfl 38395 df-lkr 38423 df-ldual 38461 df-oposet 38513 df-ol 38515 df-oml 38516 df-covers 38603 df-ats 38604 df-atl 38635 df-cvlat 38659 df-hlat 38688 df-llines 38836 df-lplanes 38837 df-lvols 38838 df-lines 38839 df-psubsp 38841 df-pmap 38842 df-padd 39134 df-lhyp 39326 df-laut 39327 df-ldil 39442 df-ltrn 39443 df-trl 39497 df-tgrp 40081 df-tendo 40093 df-edring 40095 df-dveca 40341 df-disoa 40367 df-dvech 40417 df-dib 40477 df-dic 40511 df-dih 40567 df-doch 40686 df-djh 40733 df-lcdual 40925 df-mapd 40963 |
This theorem is referenced by: mapdh8c 41119 mapdh8d0N 41120 mapdh8d 41121 |
Copyright terms: Public domain | W3C validator |