Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8b Structured version   Visualization version   GIF version

Theorem mapdh8b 39341
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8b.f (𝜑𝐺𝐷)
mapdh8b.mn (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
mapdh8b.a (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = 𝐸)
mapdh8b.x (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8b.y (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh8b.yz (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
mapdh8b.xt (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8b.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
mapdh8b.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
mapdh8b.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
Assertion
Ref Expression
mapdh8b (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   𝑤,,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑇(𝑤)   𝑈(𝑥,𝑤)   𝐸(𝑤)   𝐺(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑥,𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)

Proof of Theorem mapdh8b
StepHypRef Expression
1 mapdh8a.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . 2 𝑉 = (Base‘𝑈)
4 mapdh8a.s . 2 = (-g𝑈)
5 mapdh8a.o . 2 0 = (0g𝑈)
6 mapdh8a.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . 2 𝐷 = (Base‘𝐶)
9 mapdh8a.r . 2 𝑅 = (-g𝐶)
10 mapdh8a.q . 2 𝑄 = (0g𝐶)
11 mapdh8a.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8b.f . 2 (𝜑𝐺𝐷)
16 mapdh8b.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
17 mapdh8b.a . 2 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = 𝐸)
18 mapdh8b.x . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdh8b.y . 2 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
20 mapdh8b.yz . 2 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
21 mapdh8b.xt . 2 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
221, 2, 14dvhlvec 38670 . . . 4 (𝜑𝑈 ∈ LVec)
2318eldifad 3866 . . . 4 (𝜑𝑌𝑉)
2419eldifad 3866 . . . 4 (𝜑𝑤𝑉)
2521eldifad 3866 . . . 4 (𝜑𝑇𝑉)
26 mapdh8b.e . . . 4 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
27 mapdh8b.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
283, 6, 22, 23, 24, 25, 26, 27lspindp5 39331 . . 3 (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))
29 prcom 4618 . . . . . 6 {𝑤, 𝑇} = {𝑇, 𝑤}
3029fveq2i 6654 . . . . 5 (𝑁‘{𝑤, 𝑇}) = (𝑁‘{𝑇, 𝑤})
3130eleq2i 2842 . . . 4 (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) ↔ 𝑌 ∈ (𝑁‘{𝑇, 𝑤}))
3222adantr 485 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑈 ∈ LVec)
3318adantr 485 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3425adantr 485 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇𝑉)
3524adantr 485 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑤𝑉)
36 mapdh8b.vw . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
3736adantr 485 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
38 simpr 489 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑤}))
393, 5, 6, 32, 33, 34, 35, 37, 38lspexch 19954 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))
4039ex 417 . . . 4 (𝜑 → (𝑌 ∈ (𝑁‘{𝑇, 𝑤}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})))
4131, 40syl5bi 245 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})))
4228, 41mtod 201 . 2 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑤, 𝑇}))
431, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 42mapdh8a 39336 1 (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400   = wceq 1539  wcel 2112  wne 2949  Vcvv 3407  cdif 3851  ifcif 4413  {csn 4515  {cpr 4517  cotp 4523  cmpt 5105  cfv 6328  crio 7100  (class class class)co 7143  1st c1st 7684  2nd c2nd 7685  Basecbs 16526  0gc0g 16756  -gcsg 18156  LSpanclspn 19796  LVecclvec 19927  HLchlt 36911  LHypclh 37545  DVecHcdvh 38639  LCDualclcd 39147  mapdcmpd 39185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637  ax-riotaBAD 36514
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rmo 3076  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-ot 4524  df-uni 4792  df-int 4832  df-iun 4878  df-iin 4879  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-of 7398  df-om 7573  df-1st 7686  df-2nd 7687  df-tpos 7895  df-undef 7942  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-map 8411  df-en 8521  df-dom 8522  df-sdom 8523  df-fin 8524  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-2 11722  df-3 11723  df-4 11724  df-5 11725  df-6 11726  df-n0 11920  df-z 12006  df-uz 12268  df-fz 12925  df-struct 16528  df-ndx 16529  df-slot 16530  df-base 16532  df-sets 16533  df-ress 16534  df-plusg 16621  df-mulr 16622  df-sca 16624  df-vsca 16625  df-0g 16758  df-mre 16900  df-mrc 16901  df-acs 16903  df-proset 17589  df-poset 17607  df-plt 17619  df-lub 17635  df-glb 17636  df-join 17637  df-meet 17638  df-p0 17700  df-p1 17701  df-lat 17707  df-clat 17769  df-mgm 17903  df-sgrp 17952  df-mnd 17963  df-submnd 18008  df-grp 18157  df-minusg 18158  df-sbg 18159  df-subg 18328  df-cntz 18499  df-oppg 18526  df-lsm 18813  df-cmn 18960  df-abl 18961  df-mgp 19293  df-ur 19305  df-ring 19352  df-oppr 19429  df-dvdsr 19447  df-unit 19448  df-invr 19478  df-dvr 19489  df-drng 19557  df-lmod 19689  df-lss 19757  df-lsp 19797  df-lvec 19928  df-lsatoms 36537  df-lshyp 36538  df-lcv 36580  df-lfl 36619  df-lkr 36647  df-ldual 36685  df-oposet 36737  df-ol 36739  df-oml 36740  df-covers 36827  df-ats 36828  df-atl 36859  df-cvlat 36883  df-hlat 36912  df-llines 37059  df-lplanes 37060  df-lvols 37061  df-lines 37062  df-psubsp 37064  df-pmap 37065  df-padd 37357  df-lhyp 37549  df-laut 37550  df-ldil 37665  df-ltrn 37666  df-trl 37720  df-tgrp 38304  df-tendo 38316  df-edring 38318  df-dveca 38564  df-disoa 38590  df-dvech 38640  df-dib 38700  df-dic 38734  df-dih 38790  df-doch 38909  df-djh 38956  df-lcdual 39148  df-mapd 39186
This theorem is referenced by:  mapdh8c  39342  mapdh8d0N  39343  mapdh8d  39344
  Copyright terms: Public domain W3C validator