| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8b | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8b.f | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
| mapdh8b.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) |
| mapdh8b.a | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = 𝐸) |
| mapdh8b.x | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8b.y | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| mapdh8b.yz | ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
| mapdh8b.xt | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8b.vw | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| mapdh8b.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
| mapdh8b.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| Ref | Expression |
|---|---|
| mapdh8b | ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . 2 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.s | . 2 ⊢ − = (-g‘𝑈) | |
| 5 | mapdh8a.o | . 2 ⊢ 0 = (0g‘𝑈) | |
| 6 | mapdh8a.n | . 2 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 7 | mapdh8a.c | . 2 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | mapdh8a.d | . 2 ⊢ 𝐷 = (Base‘𝐶) | |
| 9 | mapdh8a.r | . 2 ⊢ 𝑅 = (-g‘𝐶) | |
| 10 | mapdh8a.q | . 2 ⊢ 𝑄 = (0g‘𝐶) | |
| 11 | mapdh8a.j | . 2 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdh8a.m | . 2 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdh8a.i | . 2 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 14 | mapdh8a.k | . 2 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdh8b.f | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
| 16 | mapdh8b.mn | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺})) | |
| 17 | mapdh8b.a | . 2 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑤〉) = 𝐸) | |
| 18 | mapdh8b.x | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 19 | mapdh8b.y | . 2 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
| 20 | mapdh8b.yz | . 2 ⊢ (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) | |
| 21 | mapdh8b.xt | . 2 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 22 | 1, 2, 14 | dvhlvec 41049 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 23 | 18 | eldifad 3936 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 24 | 19 | eldifad 3936 | . . . 4 ⊢ (𝜑 → 𝑤 ∈ 𝑉) |
| 25 | 21 | eldifad 3936 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 26 | mapdh8b.e | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
| 27 | mapdh8b.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) | |
| 28 | 3, 6, 22, 23, 24, 25, 26, 27 | lspindp5 41710 | . . 3 ⊢ (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑤})) |
| 29 | prcom 4705 | . . . . . 6 ⊢ {𝑤, 𝑇} = {𝑇, 𝑤} | |
| 30 | 29 | fveq2i 6875 | . . . . 5 ⊢ (𝑁‘{𝑤, 𝑇}) = (𝑁‘{𝑇, 𝑤}) |
| 31 | 30 | eleq2i 2825 | . . . 4 ⊢ (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) ↔ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) |
| 32 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑈 ∈ LVec) |
| 33 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 34 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ 𝑉) |
| 35 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑤 ∈ 𝑉) |
| 36 | mapdh8b.vw | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) | |
| 37 | 36 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| 38 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) | |
| 39 | 3, 5, 6, 32, 33, 34, 35, 37, 38 | lspexch 21075 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})) |
| 40 | 39 | ex 412 | . . . 4 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑇, 𝑤}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))) |
| 41 | 31, 40 | biimtrid 242 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))) |
| 42 | 28, 41 | mtod 198 | . 2 ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑤, 𝑇})) |
| 43 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 42 | mapdh8a 41715 | 1 ⊢ (𝜑 → (𝐼‘〈𝑤, 𝐸, 𝑇〉) = (𝐼‘〈𝑌, 𝐺, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3457 ∖ cdif 3921 ifcif 4498 {csn 4599 {cpr 4601 〈cotp 4607 ↦ cmpt 5198 ‘cfv 6527 ℩crio 7355 (class class class)co 7399 1st c1st 7980 2nd c2nd 7981 Basecbs 17213 0gc0g 17438 -gcsg 18903 LSpanclspn 20913 LVecclvec 21045 HLchlt 39289 LHypclh 39924 DVecHcdvh 41018 LCDualclcd 41526 mapdcmpd 41564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-riotaBAD 38892 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-ot 4608 df-uni 4881 df-int 4920 df-iun 4966 df-iin 4967 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-tpos 8219 df-undef 8266 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-2o 8475 df-er 8713 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-n0 12494 df-z 12581 df-uz 12845 df-fz 13514 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-sca 17272 df-vsca 17273 df-0g 17440 df-mre 17583 df-mrc 17584 df-acs 17586 df-proset 18291 df-poset 18310 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-p1 18421 df-lat 18427 df-clat 18494 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18747 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-cntz 19285 df-oppg 19314 df-lsm 19602 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-nzr 20458 df-rlreg 20639 df-domn 20640 df-drng 20676 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-lsatoms 38915 df-lshyp 38916 df-lcv 38958 df-lfl 38997 df-lkr 39025 df-ldual 39063 df-oposet 39115 df-ol 39117 df-oml 39118 df-covers 39205 df-ats 39206 df-atl 39237 df-cvlat 39261 df-hlat 39290 df-llines 39438 df-lplanes 39439 df-lvols 39440 df-lines 39441 df-psubsp 39443 df-pmap 39444 df-padd 39736 df-lhyp 39928 df-laut 39929 df-ldil 40044 df-ltrn 40045 df-trl 40099 df-tgrp 40683 df-tendo 40695 df-edring 40697 df-dveca 40943 df-disoa 40969 df-dvech 41019 df-dib 41079 df-dic 41113 df-dih 41169 df-doch 41288 df-djh 41335 df-lcdual 41527 df-mapd 41565 |
| This theorem is referenced by: mapdh8c 41721 mapdh8d0N 41722 mapdh8d 41723 |
| Copyright terms: Public domain | W3C validator |