Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8b Structured version   Visualization version   GIF version

Theorem mapdh8b 41720
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 6-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8b.f (𝜑𝐺𝐷)
mapdh8b.mn (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
mapdh8b.a (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = 𝐸)
mapdh8b.x (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8b.y (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdh8b.yz (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
mapdh8b.xt (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8b.vw (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
mapdh8b.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
mapdh8b.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
Assertion
Ref Expression
mapdh8b (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   ,𝐸,𝑥   𝑤,,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑤)   𝐶(𝑥,𝑤)   𝐷(𝑤)   𝑄(𝑤,)   𝑅(𝑤)   𝑇(𝑤)   𝑈(𝑥,𝑤)   𝐸(𝑤)   𝐺(𝑤)   𝐻(𝑥,𝑤,)   𝐼(𝑥,𝑤)   𝐽(𝑤)   𝐾(𝑥,𝑤,)   𝑀(𝑤)   (𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑤,)   𝑊(𝑥,𝑤,)   𝑋(𝑤)   𝑌(𝑤)   0 (𝑤)

Proof of Theorem mapdh8b
StepHypRef Expression
1 mapdh8a.h . 2 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . 2 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . 2 𝑉 = (Base‘𝑈)
4 mapdh8a.s . 2 = (-g𝑈)
5 mapdh8a.o . 2 0 = (0g𝑈)
6 mapdh8a.n . 2 𝑁 = (LSpan‘𝑈)
7 mapdh8a.c . 2 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 mapdh8a.d . 2 𝐷 = (Base‘𝐶)
9 mapdh8a.r . 2 𝑅 = (-g𝐶)
10 mapdh8a.q . 2 𝑄 = (0g𝐶)
11 mapdh8a.j . 2 𝐽 = (LSpan‘𝐶)
12 mapdh8a.m . 2 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdh8a.i . 2 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
14 mapdh8a.k . 2 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdh8b.f . 2 (𝜑𝐺𝐷)
16 mapdh8b.mn . 2 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝐺}))
17 mapdh8b.a . 2 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑤⟩) = 𝐸)
18 mapdh8b.x . 2 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
19 mapdh8b.y . 2 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
20 mapdh8b.yz . 2 (𝜑 → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
21 mapdh8b.xt . 2 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
221, 2, 14dvhlvec 41049 . . . 4 (𝜑𝑈 ∈ LVec)
2318eldifad 3936 . . . 4 (𝜑𝑌𝑉)
2419eldifad 3936 . . . 4 (𝜑𝑤𝑉)
2521eldifad 3936 . . . 4 (𝜑𝑇𝑉)
26 mapdh8b.e . . . 4 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
27 mapdh8b.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
283, 6, 22, 23, 24, 25, 26, 27lspindp5 41710 . . 3 (𝜑 → ¬ 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))
29 prcom 4705 . . . . . 6 {𝑤, 𝑇} = {𝑇, 𝑤}
3029fveq2i 6875 . . . . 5 (𝑁‘{𝑤, 𝑇}) = (𝑁‘{𝑇, 𝑤})
3130eleq2i 2825 . . . 4 (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) ↔ 𝑌 ∈ (𝑁‘{𝑇, 𝑤}))
3222adantr 480 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑈 ∈ LVec)
3318adantr 480 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
3425adantr 480 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇𝑉)
3524adantr 480 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑤𝑉)
36 mapdh8b.vw . . . . . . 7 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
3736adantr 480 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
38 simpr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑌 ∈ (𝑁‘{𝑇, 𝑤}))
393, 5, 6, 32, 33, 34, 35, 37, 38lspexch 21075 . . . . 5 ((𝜑𝑌 ∈ (𝑁‘{𝑇, 𝑤})) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤}))
4039ex 412 . . . 4 (𝜑 → (𝑌 ∈ (𝑁‘{𝑇, 𝑤}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})))
4131, 40biimtrid 242 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑤, 𝑇}) → 𝑇 ∈ (𝑁‘{𝑌, 𝑤})))
4228, 41mtod 198 . 2 (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑤, 𝑇}))
431, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 42mapdh8a 41715 1 (𝜑 → (𝐼‘⟨𝑤, 𝐸, 𝑇⟩) = (𝐼‘⟨𝑌, 𝐺, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3457  cdif 3921  ifcif 4498  {csn 4599  {cpr 4601  cotp 4607  cmpt 5198  cfv 6527  crio 7355  (class class class)co 7399  1st c1st 7980  2nd c2nd 7981  Basecbs 17213  0gc0g 17438  -gcsg 18903  LSpanclspn 20913  LVecclvec 21045  HLchlt 39289  LHypclh 39924  DVecHcdvh 41018  LCDualclcd 41526  mapdcmpd 41564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-riotaBAD 38892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-undef 8266  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-0g 17440  df-mre 17583  df-mrc 17584  df-acs 17586  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-subg 19091  df-cntz 19285  df-oppg 19314  df-lsm 19602  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20282  df-dvdsr 20302  df-unit 20303  df-invr 20333  df-dvr 20346  df-nzr 20458  df-rlreg 20639  df-domn 20640  df-drng 20676  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lsatoms 38915  df-lshyp 38916  df-lcv 38958  df-lfl 38997  df-lkr 39025  df-ldual 39063  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-llines 39438  df-lplanes 39439  df-lvols 39440  df-lines 39441  df-psubsp 39443  df-pmap 39444  df-padd 39736  df-lhyp 39928  df-laut 39929  df-ldil 40044  df-ltrn 40045  df-trl 40099  df-tgrp 40683  df-tendo 40695  df-edring 40697  df-dveca 40943  df-disoa 40969  df-dvech 41019  df-dib 41079  df-dic 41113  df-dih 41169  df-doch 41288  df-djh 41335  df-lcdual 41527  df-mapd 41565
This theorem is referenced by:  mapdh8c  41721  mapdh8d0N  41722  mapdh8d  41723
  Copyright terms: Public domain W3C validator