| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatdim | Structured version Visualization version GIF version | ||
| Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| lbslsat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbslsat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lbslsat.z | ⊢ 0 = (0g‘𝑊) |
| lbslsat.y | ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) |
| Ref | Expression |
|---|---|
| lsatdim | ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LVec) | |
| 2 | lveclmod 21069 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod) |
| 4 | simp2 1137 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) | |
| 5 | 4 | snssd 4790 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ⊆ 𝑉) |
| 6 | lbslsat.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 7 | eqid 2736 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 8 | lbslsat.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | 6, 7, 8 | lspcl 20938 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 10 | 3, 5, 9 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 11 | lbslsat.y | . . . . 5 ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) | |
| 12 | 11, 7 | lsslvec 21072 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec) |
| 13 | 1, 10, 12 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec) |
| 14 | lbslsat.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 15 | 6, 8, 14, 11 | lbslsat 33661 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ∈ (LBasis‘𝑌)) |
| 16 | eqid 2736 | . . . 4 ⊢ (LBasis‘𝑌) = (LBasis‘𝑌) | |
| 17 | 16 | dimval 33645 | . . 3 ⊢ ((𝑌 ∈ LVec ∧ {𝑋} ∈ (LBasis‘𝑌)) → (dim‘𝑌) = (♯‘{𝑋})) |
| 18 | 13, 15, 17 | syl2anc 584 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = (♯‘{𝑋})) |
| 19 | hashsng 14392 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (♯‘{𝑋}) = 1) | |
| 20 | 4, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (♯‘{𝑋}) = 1) |
| 21 | 18, 20 | eqtrd 2771 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ⊆ wss 3931 {csn 4606 ‘cfv 6536 (class class class)co 7410 1c1 11135 ♯chash 14353 Basecbs 17233 ↾s cress 17256 0gc0g 17458 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LBasisclbs 21037 LVecclvec 21065 dimcldim 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-r1 9783 df-rank 9784 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-tset 17295 df-ple 17296 df-ocomp 17297 df-0g 17460 df-mre 17603 df-mrc 17604 df-mri 17605 df-acs 17606 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lbs 21038 df-lvec 21066 df-dim 33644 |
| This theorem is referenced by: drngdimgt0 33663 |
| Copyright terms: Public domain | W3C validator |