Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatdim Structured version   Visualization version   GIF version

Theorem lsatdim 33668
Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lsatdim ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)

Proof of Theorem lsatdim
StepHypRef Expression
1 simp1 1137 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LVec)
2 lveclmod 21105 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod)
4 simp2 1138 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑋𝑉)
54snssd 4809 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ 𝑉)
6 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
7 eqid 2737 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
96, 7, 8lspcl 20974 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
103, 5, 9syl2anc 584 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
11 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
1211, 7lsslvec 21108 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
131, 10, 12syl2anc 584 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
14 lbslsat.z . . . 4 0 = (0g𝑊)
156, 8, 14, 11lbslsat 33667 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
16 eqid 2737 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
1716dimval 33651 . . 3 ((𝑌 ∈ LVec ∧ {𝑋} ∈ (LBasis‘𝑌)) → (dim‘𝑌) = (♯‘{𝑋}))
1813, 15, 17syl2anc 584 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = (♯‘{𝑋}))
19 hashsng 14408 . . 3 (𝑋𝑉 → (♯‘{𝑋}) = 1)
204, 19syl 17 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (♯‘{𝑋}) = 1)
2118, 20eqtrd 2777 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  1c1 11156  chash 14369  Basecbs 17247  s cress 17274  0gc0g 17484  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LBasisclbs 21073  LVecclvec 21101  dimcldim 33649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-oi 9550  df-r1 9804  df-rank 9805  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-ocomp 17318  df-0g 17486  df-mre 17629  df-mrc 17630  df-mri 17631  df-acs 17632  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lbs 21074  df-lvec 21102  df-dim 33650
This theorem is referenced by:  drngdimgt0  33669
  Copyright terms: Public domain W3C validator