![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatdim | Structured version Visualization version GIF version |
Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
lbslsat.v | ⊢ 𝑉 = (Base‘𝑊) |
lbslsat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbslsat.z | ⊢ 0 = (0g‘𝑊) |
lbslsat.y | ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) |
Ref | Expression |
---|---|
lsatdim | ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LVec) | |
2 | lveclmod 21031 | . . . . . 6 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑊 ∈ LMod) |
4 | simp2 1134 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝑉) | |
5 | 4 | snssd 4817 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ⊆ 𝑉) |
6 | lbslsat.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
7 | eqid 2725 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
8 | lbslsat.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 6, 7, 8 | lspcl 20900 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
10 | 3, 5, 9 | syl2anc 582 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
11 | lbslsat.y | . . . . 5 ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) | |
12 | 11, 7 | lsslvec 21034 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec) |
13 | 1, 10, 12 | syl2anc 582 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → 𝑌 ∈ LVec) |
14 | lbslsat.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | 6, 8, 14, 11 | lbslsat 33483 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ∈ (LBasis‘𝑌)) |
16 | eqid 2725 | . . . 4 ⊢ (LBasis‘𝑌) = (LBasis‘𝑌) | |
17 | 16 | dimval 33467 | . . 3 ⊢ ((𝑌 ∈ LVec ∧ {𝑋} ∈ (LBasis‘𝑌)) → (dim‘𝑌) = (♯‘{𝑋})) |
18 | 13, 15, 17 | syl2anc 582 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = (♯‘{𝑋})) |
19 | hashsng 14381 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (♯‘{𝑋}) = 1) | |
20 | 4, 19 | syl 17 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (♯‘{𝑋}) = 1) |
21 | 18, 20 | eqtrd 2765 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ⊆ wss 3946 {csn 4632 ‘cfv 6553 (class class class)co 7423 1c1 11155 ♯chash 14342 Basecbs 17208 ↾s cress 17237 0gc0g 17449 LModclmod 20783 LSubSpclss 20855 LSpanclspn 20895 LBasisclbs 20999 LVecclvec 21027 dimcldim 33465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-reg 9631 ax-inf2 9680 ax-ac2 10502 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-se 5637 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8856 df-en 8974 df-dom 8975 df-sdom 8976 df-fin 8977 df-oi 9549 df-r1 9803 df-rank 9804 df-card 9978 df-acn 9981 df-ac 10155 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-xnn0 12592 df-z 12606 df-dec 12725 df-uz 12870 df-fz 13534 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-tset 17280 df-ple 17281 df-ocomp 17282 df-0g 17451 df-mre 17594 df-mrc 17595 df-mri 17596 df-acs 17597 df-proset 18315 df-drs 18316 df-poset 18333 df-ipo 18548 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-grp 18926 df-minusg 18927 df-sbg 18928 df-subg 19112 df-cmn 19775 df-abl 19776 df-mgp 20113 df-rng 20131 df-ur 20160 df-ring 20213 df-oppr 20311 df-dvdsr 20334 df-unit 20335 df-invr 20365 df-drng 20666 df-lmod 20785 df-lss 20856 df-lsp 20896 df-lbs 21000 df-lvec 21028 df-dim 33466 |
This theorem is referenced by: drngdimgt0 33485 |
Copyright terms: Public domain | W3C validator |