Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatdim Structured version   Visualization version   GIF version

Theorem lsatdim 33484
Description: A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
lbslsat.v 𝑉 = (Base‘𝑊)
lbslsat.n 𝑁 = (LSpan‘𝑊)
lbslsat.z 0 = (0g𝑊)
lbslsat.y 𝑌 = (𝑊s (𝑁‘{𝑋}))
Assertion
Ref Expression
lsatdim ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)

Proof of Theorem lsatdim
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LVec)
2 lveclmod 21031 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
31, 2syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑊 ∈ LMod)
4 simp2 1134 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑋𝑉)
54snssd 4817 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ⊆ 𝑉)
6 lbslsat.v . . . . . 6 𝑉 = (Base‘𝑊)
7 eqid 2725 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
8 lbslsat.n . . . . . 6 𝑁 = (LSpan‘𝑊)
96, 7, 8lspcl 20900 . . . . 5 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
103, 5, 9syl2anc 582 . . . 4 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
11 lbslsat.y . . . . 5 𝑌 = (𝑊s (𝑁‘{𝑋}))
1211, 7lsslvec 21034 . . . 4 ((𝑊 ∈ LVec ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) → 𝑌 ∈ LVec)
131, 10, 12syl2anc 582 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → 𝑌 ∈ LVec)
14 lbslsat.z . . . 4 0 = (0g𝑊)
156, 8, 14, 11lbslsat 33483 . . 3 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → {𝑋} ∈ (LBasis‘𝑌))
16 eqid 2725 . . . 4 (LBasis‘𝑌) = (LBasis‘𝑌)
1716dimval 33467 . . 3 ((𝑌 ∈ LVec ∧ {𝑋} ∈ (LBasis‘𝑌)) → (dim‘𝑌) = (♯‘{𝑋}))
1813, 15, 17syl2anc 582 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = (♯‘{𝑋}))
19 hashsng 14381 . . 3 (𝑋𝑉 → (♯‘{𝑋}) = 1)
204, 19syl 17 . 2 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (♯‘{𝑋}) = 1)
2118, 20eqtrd 2765 1 ((𝑊 ∈ LVec ∧ 𝑋𝑉𝑋0 ) → (dim‘𝑌) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2929  wss 3946  {csn 4632  cfv 6553  (class class class)co 7423  1c1 11155  chash 14342  Basecbs 17208  s cress 17237  0gc0g 17449  LModclmod 20783  LSubSpclss 20855  LSpanclspn 20895  LBasisclbs 20999  LVecclvec 21027  dimcldim 33465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-reg 9631  ax-inf2 9680  ax-ac2 10502  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-se 5637  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-tpos 8240  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8856  df-en 8974  df-dom 8975  df-sdom 8976  df-fin 8977  df-oi 9549  df-r1 9803  df-rank 9804  df-card 9978  df-acn 9981  df-ac 10155  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-nn 12260  df-2 12322  df-3 12323  df-4 12324  df-5 12325  df-6 12326  df-7 12327  df-8 12328  df-9 12329  df-n0 12520  df-xnn0 12592  df-z 12606  df-dec 12725  df-uz 12870  df-fz 13534  df-hash 14343  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-sca 17277  df-vsca 17278  df-tset 17280  df-ple 17281  df-ocomp 17282  df-0g 17451  df-mre 17594  df-mrc 17595  df-mri 17596  df-acs 17597  df-proset 18315  df-drs 18316  df-poset 18333  df-ipo 18548  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-subg 19112  df-cmn 19775  df-abl 19776  df-mgp 20113  df-rng 20131  df-ur 20160  df-ring 20213  df-oppr 20311  df-dvdsr 20334  df-unit 20335  df-invr 20365  df-drng 20666  df-lmod 20785  df-lss 20856  df-lsp 20896  df-lbs 21000  df-lvec 21028  df-dim 33466
This theorem is referenced by:  drngdimgt0  33485
  Copyright terms: Public domain W3C validator