![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspindp1 | Structured version Visualization version GIF version |
Description: Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
lspindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
lspindp1.o | ⊢ 0 = (0g‘𝑊) |
lspindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspindp1.y | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
lspindp1.z | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspindp1.x | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lspindp1.q | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
lspindp1.e | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
lspindp1 | ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspindp1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspindp1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspindp1.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lspindp1.x | . . . 4 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
5 | lspindp1.y | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
6 | 5 | eldifad 3803 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
7 | lspindp1.z | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
8 | lspindp1.e | . . . 4 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) | |
9 | 1, 2, 3, 4, 6, 7, 8 | lspindpi 19528 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))) |
10 | 9 | simprd 491 | . 2 ⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) |
11 | lspindp1.o | . . . 4 ⊢ 0 = (0g‘𝑊) | |
12 | 3 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑊 ∈ LVec) |
13 | 5 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
14 | 4 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑍 ∈ 𝑉) |
15 | 7 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑌 ∈ 𝑉) |
16 | lspindp1.q | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
17 | 16 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
18 | simpr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) | |
19 | 1, 11, 2, 12, 13, 14, 15, 17, 18 | lspexch 19525 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) |
20 | 8, 19 | mtand 806 | . 2 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) |
21 | 10, 20 | jca 507 | 1 ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ≠ wne 2968 ∖ cdif 3788 {csn 4397 {cpr 4399 ‘cfv 6135 Basecbs 16255 0gc0g 16486 LSpanclspn 19366 LVecclvec 19497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-cntz 18133 df-lsm 18435 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-drng 19141 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lvec 19498 |
This theorem is referenced by: lspindp2l 19530 lspindp2 19531 mapdindp3 37860 mapdindp4 37861 mapdheq4lem 37869 mapdheq4 37870 mapdh6lem1N 37871 mapdh6lem2N 37872 mapdh6aN 37873 mapdh6dN 37877 mapdh6eN 37878 mapdh6fN 37879 mapdh7dN 37888 hdmap1l6lem1 37945 hdmap1l6lem2 37946 hdmap1l6a 37947 hdmap1l6d 37951 hdmap1l6e 37952 hdmap1l6f 37953 |
Copyright terms: Public domain | W3C validator |