MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metelcls Structured version   Visualization version   GIF version

Theorem metelcls 23907
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 9856. The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Hypotheses
Ref Expression
metelcls.2 𝐽 = (MetOpen‘𝐷)
metelcls.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
metelcls.5 (𝜑𝑆𝑋)
Assertion
Ref Expression
metelcls (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑃,𝑓   𝑆,𝑓   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem metelcls
StepHypRef Expression
1 metelcls.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metelcls.2 . . . 4 𝐽 = (MetOpen‘𝐷)
32met1stc 23130 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω)
41, 3syl 17 . 2 (𝜑𝐽 ∈ 1stω)
5 metelcls.5 . . 3 (𝜑𝑆𝑋)
62mopnuni 23050 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
71, 6syl 17 . . 3 (𝜑𝑋 = 𝐽)
85, 7sseqtrd 4006 . 2 (𝜑𝑆 𝐽)
9 eqid 2821 . . 3 𝐽 = 𝐽
1091stcelcls 22068 . 2 ((𝐽 ∈ 1stω ∧ 𝑆 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
114, 8, 10syl2anc 586 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wss 3935   cuni 4837   class class class wbr 5065  wf 6350  cfv 6354  cn 11637  ∞Metcxmet 20529  MetOpencmopn 20534  clsccl 21625  𝑡clm 21833  1stωc1stc 22044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-card 9367  df-acn 9370  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-fz 12892  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-bl 20539  df-mopn 20540  df-top 21501  df-topon 21518  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-lm 21836  df-1stc 22046
This theorem is referenced by:  metcld  23908
  Copyright terms: Public domain W3C validator