![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metelcls | Structured version Visualization version GIF version |
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10427. The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007.) (Proof shortened by Mario Carneiro, 1-May-2015.) |
Ref | Expression |
---|---|
metelcls.2 | β’ π½ = (MetOpenβπ·) |
metelcls.3 | β’ (π β π· β (βMetβπ)) |
metelcls.5 | β’ (π β π β π) |
Ref | Expression |
---|---|
metelcls | β’ (π β (π β ((clsβπ½)βπ) β βπ(π:ββΆπ β§ π(βπ‘βπ½)π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metelcls.3 | . . 3 β’ (π β π· β (βMetβπ)) | |
2 | metelcls.2 | . . . 4 β’ π½ = (MetOpenβπ·) | |
3 | 2 | met1stc 24374 | . . 3 β’ (π· β (βMetβπ) β π½ β 1stΟ) |
4 | 1, 3 | syl 17 | . 2 β’ (π β π½ β 1stΟ) |
5 | metelcls.5 | . . 3 β’ (π β π β π) | |
6 | 2 | mopnuni 24291 | . . . 4 β’ (π· β (βMetβπ) β π = βͺ π½) |
7 | 1, 6 | syl 17 | . . 3 β’ (π β π = βͺ π½) |
8 | 5, 7 | sseqtrd 4015 | . 2 β’ (π β π β βͺ π½) |
9 | eqid 2724 | . . 3 β’ βͺ π½ = βͺ π½ | |
10 | 9 | 1stcelcls 23309 | . 2 β’ ((π½ β 1stΟ β§ π β βͺ π½) β (π β ((clsβπ½)βπ) β βπ(π:ββΆπ β§ π(βπ‘βπ½)π))) |
11 | 4, 8, 10 | syl2anc 583 | 1 β’ (π β (π β ((clsβπ½)βπ) β βπ(π:ββΆπ β§ π(βπ‘βπ½)π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 βwex 1773 β wcel 2098 β wss 3941 βͺ cuni 4900 class class class wbr 5139 βΆwf 6530 βcfv 6534 βcn 12211 βMetcxmet 21219 MetOpencmopn 21224 clsccl 22866 βπ‘clm 23074 1stΟc1stc 23285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-inf2 9633 ax-cc 10427 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8700 df-map 8819 df-pm 8820 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-card 9931 df-acn 9934 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12976 df-xneg 13093 df-xadd 13094 df-xmul 13095 df-fz 13486 df-topgen 17394 df-psmet 21226 df-xmet 21227 df-bl 21229 df-mopn 21230 df-top 22740 df-topon 22757 df-bases 22793 df-cld 22867 df-ntr 22868 df-cls 22869 df-lm 23077 df-1stc 23287 |
This theorem is referenced by: metcld 25178 |
Copyright terms: Public domain | W3C validator |