MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metelcls Structured version   Visualization version   GIF version

Theorem metelcls 25233
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 10333. The statement can be generalized to first-countable spaces, not just metrizable spaces. (Contributed by NM, 8-Nov-2007.) (Proof shortened by Mario Carneiro, 1-May-2015.)
Hypotheses
Ref Expression
metelcls.2 𝐽 = (MetOpen‘𝐷)
metelcls.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
metelcls.5 (𝜑𝑆𝑋)
Assertion
Ref Expression
metelcls (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Distinct variable groups:   𝐷,𝑓   𝑓,𝐽   𝑃,𝑓   𝑆,𝑓   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem metelcls
StepHypRef Expression
1 metelcls.3 . . 3 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 metelcls.2 . . . 4 𝐽 = (MetOpen‘𝐷)
32met1stc 24437 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ 1stω)
41, 3syl 17 . 2 (𝜑𝐽 ∈ 1stω)
5 metelcls.5 . . 3 (𝜑𝑆𝑋)
62mopnuni 24357 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
71, 6syl 17 . . 3 (𝜑𝑋 = 𝐽)
85, 7sseqtrd 3967 . 2 (𝜑𝑆 𝐽)
9 eqid 2733 . . 3 𝐽 = 𝐽
1091stcelcls 23377 . 2 ((𝐽 ∈ 1stω ∧ 𝑆 𝐽) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
114, 8, 10syl2anc 584 1 (𝜑 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  wss 3898   cuni 4858   class class class wbr 5093  wf 6482  cfv 6486  cn 12132  ∞Metcxmet 21278  MetOpencmopn 21283  clsccl 22934  𝑡clm 23142  1stωc1stc 23353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-acn 9842  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-xneg 13013  df-xadd 13014  df-xmul 13015  df-fz 13410  df-topgen 17349  df-psmet 21285  df-xmet 21286  df-bl 21288  df-mopn 21289  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-ntr 22936  df-cls 22937  df-lm 23145  df-1stc 23355
This theorem is referenced by:  metcld  25234
  Copyright terms: Public domain W3C validator