MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4c Structured version   Visualization version   GIF version

Theorem minvecolem4c 30808
Description: Lemma for minveco 30813. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4c (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4c
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minveco.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
3 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
4 minveco.n . . . . 5 𝑁 = (normCV𝑈)
5 minveco.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 minveco.u . . . . 5 (𝜑𝑈 ∈ CPreHilOLD)
7 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
8 minveco.a . . . . 5 (𝜑𝐴𝑋)
9 minveco.d . . . . 5 𝐷 = (IndMet‘𝑈)
10 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
11 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem1 30803 . . . 4 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1312simp1d 1142 . . 3 (𝜑𝑅 ⊆ ℝ)
1412simp2d 1143 . . 3 (𝜑𝑅 ≠ ∅)
15 0re 11176 . . . 4 0 ∈ ℝ
1612simp3d 1144 . . . 4 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
17 breq1 5110 . . . . . 6 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1817ralbidv 3156 . . . . 5 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
1918rspcev 3588 . . . 4 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2015, 16, 19sylancr 587 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
21 infrecl 12165 . . 3 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2213, 14, 20, 21syl3anc 1373 . 2 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
231, 22eqeltrid 2832 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cin 3913  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209   / cdiv 11835  cn 12186  2c2 12241  cexp 14026  MetOpencmopn 21254  BaseSetcba 30515  𝑣 cnsb 30518  normCVcnmcv 30519  IndMetcims 30520  SubSpcss 30650  CPreHilOLDccphlo 30741  CBanccbn 30791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ssp 30651  df-ph 30742  df-cbn 30792
This theorem is referenced by:  minvecolem4  30809
  Copyright terms: Public domain W3C validator