Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > minvecolem4c | Structured version Visualization version GIF version |
Description: Lemma for minveco 29475. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
Ref | Expression |
---|---|
minvecolem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
2 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
4 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
5 | minveco.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
6 | minveco.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
7 | minveco.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
8 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | minveco.d | . . . . 5 ⊢ 𝐷 = (IndMet‘𝑈) | |
10 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
11 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minvecolem1 29465 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
13 | 12 | simp1d 1141 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
14 | 12 | simp2d 1142 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
15 | 0re 11070 | . . . 4 ⊢ 0 ∈ ℝ | |
16 | 12 | simp3d 1143 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
17 | breq1 5092 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
18 | 17 | ralbidv 3170 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
19 | 18 | rspcev 3570 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
20 | 15, 16, 19 | sylancr 587 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
21 | infrecl 12050 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
22 | 13, 14, 20, 21 | syl3anc 1370 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
23 | 1, 22 | eqeltrid 2841 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∩ cin 3896 ⊆ wss 3897 ∅c0 4268 class class class wbr 5089 ↦ cmpt 5172 ran crn 5615 ⟶wf 6469 ‘cfv 6473 (class class class)co 7329 infcinf 9290 ℝcr 10963 0cc0 10964 1c1 10965 + caddc 10967 < clt 11102 ≤ cle 11103 / cdiv 11725 ℕcn 12066 2c2 12121 ↑cexp 13875 MetOpencmopn 20685 BaseSetcba 29177 −𝑣 cnsb 29180 normCVcnmcv 29181 IndMetcims 29182 SubSpcss 29312 CPreHilOLDccphlo 29403 CBanccbn 29453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-sup 9291 df-inf 9292 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-seq 13815 df-exp 13876 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-grpo 29084 df-gid 29085 df-ginv 29086 df-gdiv 29087 df-ablo 29136 df-vc 29150 df-nv 29183 df-va 29186 df-ba 29187 df-sm 29188 df-0v 29189 df-vs 29190 df-nmcv 29191 df-ssp 29313 df-ph 29404 df-cbn 29454 |
This theorem is referenced by: minvecolem4 29471 |
Copyright terms: Public domain | W3C validator |