![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > minvecolem4c | Structured version Visualization version GIF version |
Description: Lemma for minveco 30733. The infimum of the distances to π΄ is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
minveco.x | β’ π = (BaseSetβπ) |
minveco.m | β’ π = ( βπ£ βπ) |
minveco.n | β’ π = (normCVβπ) |
minveco.y | β’ π = (BaseSetβπ) |
minveco.u | β’ (π β π β CPreHilOLD) |
minveco.w | β’ (π β π β ((SubSpβπ) β© CBan)) |
minveco.a | β’ (π β π΄ β π) |
minveco.d | β’ π· = (IndMetβπ) |
minveco.j | β’ π½ = (MetOpenβπ·) |
minveco.r | β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) |
minveco.s | β’ π = inf(π , β, < ) |
minveco.f | β’ (π β πΉ:ββΆπ) |
minveco.1 | β’ ((π β§ π β β) β ((π΄π·(πΉβπ))β2) β€ ((πβ2) + (1 / π))) |
Ref | Expression |
---|---|
minvecolem4c | β’ (π β π β β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minveco.s | . 2 β’ π = inf(π , β, < ) | |
2 | minveco.x | . . . . 5 β’ π = (BaseSetβπ) | |
3 | minveco.m | . . . . 5 β’ π = ( βπ£ βπ) | |
4 | minveco.n | . . . . 5 β’ π = (normCVβπ) | |
5 | minveco.y | . . . . 5 β’ π = (BaseSetβπ) | |
6 | minveco.u | . . . . 5 β’ (π β π β CPreHilOLD) | |
7 | minveco.w | . . . . 5 β’ (π β π β ((SubSpβπ) β© CBan)) | |
8 | minveco.a | . . . . 5 β’ (π β π΄ β π) | |
9 | minveco.d | . . . . 5 β’ π· = (IndMetβπ) | |
10 | minveco.j | . . . . 5 β’ π½ = (MetOpenβπ·) | |
11 | minveco.r | . . . . 5 β’ π = ran (π¦ β π β¦ (πβ(π΄ππ¦))) | |
12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minvecolem1 30723 | . . . 4 β’ (π β (π β β β§ π β β β§ βπ€ β π 0 β€ π€)) |
13 | 12 | simp1d 1139 | . . 3 β’ (π β π β β) |
14 | 12 | simp2d 1140 | . . 3 β’ (π β π β β ) |
15 | 0re 11241 | . . . 4 β’ 0 β β | |
16 | 12 | simp3d 1141 | . . . 4 β’ (π β βπ€ β π 0 β€ π€) |
17 | breq1 5147 | . . . . . 6 β’ (π₯ = 0 β (π₯ β€ π€ β 0 β€ π€)) | |
18 | 17 | ralbidv 3168 | . . . . 5 β’ (π₯ = 0 β (βπ€ β π π₯ β€ π€ β βπ€ β π 0 β€ π€)) |
19 | 18 | rspcev 3603 | . . . 4 β’ ((0 β β β§ βπ€ β π 0 β€ π€) β βπ₯ β β βπ€ β π π₯ β€ π€) |
20 | 15, 16, 19 | sylancr 585 | . . 3 β’ (π β βπ₯ β β βπ€ β π π₯ β€ π€) |
21 | infrecl 12221 | . . 3 β’ ((π β β β§ π β β β§ βπ₯ β β βπ€ β π π₯ β€ π€) β inf(π , β, < ) β β) | |
22 | 13, 14, 20, 21 | syl3anc 1368 | . 2 β’ (π β inf(π , β, < ) β β) |
23 | 1, 22 | eqeltrid 2829 | 1 β’ (π β π β β) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2930 βwral 3051 βwrex 3060 β© cin 3940 β wss 3941 β c0 4319 class class class wbr 5144 β¦ cmpt 5227 ran crn 5674 βΆwf 6539 βcfv 6543 (class class class)co 7413 infcinf 9459 βcr 11132 0cc0 11133 1c1 11134 + caddc 11136 < clt 11273 β€ cle 11274 / cdiv 11896 βcn 12237 2c2 12292 βcexp 14053 MetOpencmopn 21268 BaseSetcba 30435 βπ£ cnsb 30438 normCVcnmcv 30439 IndMetcims 30440 SubSpcss 30570 CPreHilOLDccphlo 30661 CBanccbn 30711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9460 df-inf 9461 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-seq 13994 df-exp 14054 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-grpo 30342 df-gid 30343 df-ginv 30344 df-gdiv 30345 df-ablo 30394 df-vc 30408 df-nv 30441 df-va 30444 df-ba 30445 df-sm 30446 df-0v 30447 df-vs 30448 df-nmcv 30449 df-ssp 30571 df-ph 30662 df-cbn 30712 |
This theorem is referenced by: minvecolem4 30729 |
Copyright terms: Public domain | W3C validator |