MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4c Structured version   Visualization version   GIF version

Theorem minvecolem4c 28290
Description: Lemma for minveco 28295. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4c (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4c
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minveco.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
3 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
4 minveco.n . . . . 5 𝑁 = (normCV𝑈)
5 minveco.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 minveco.u . . . . 5 (𝜑𝑈 ∈ CPreHilOLD)
7 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
8 minveco.a . . . . 5 (𝜑𝐴𝑋)
9 minveco.d . . . . 5 𝐷 = (IndMet‘𝑈)
10 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
11 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem1 28285 . . . 4 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1312simp1d 1178 . . 3 (𝜑𝑅 ⊆ ℝ)
1412simp2d 1179 . . 3 (𝜑𝑅 ≠ ∅)
15 0re 10358 . . . 4 0 ∈ ℝ
1612simp3d 1180 . . . 4 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
17 breq1 4876 . . . . . 6 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1817ralbidv 3195 . . . . 5 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
1918rspcev 3526 . . . 4 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2015, 16, 19sylancr 583 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
21 infrecl 11335 . . 3 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2213, 14, 20, 21syl3anc 1496 . 2 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
231, 22syl5eqel 2910 1 (𝜑𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  wne 2999  wral 3117  wrex 3118  cin 3797  wss 3798  c0 4144   class class class wbr 4873  cmpt 4952  ran crn 5343  wf 6119  cfv 6123  (class class class)co 6905  infcinf 8616  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   < clt 10391  cle 10392   / cdiv 11009  cn 11350  2c2 11406  cexp 13154  MetOpencmopn 20096  BaseSetcba 27996  𝑣 cnsb 27999  normCVcnmcv 28000  IndMetcims 28001  SubSpcss 28131  CPreHilOLDccphlo 28222  CBanccbn 28273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-grpo 27903  df-gid 27904  df-ginv 27905  df-gdiv 27906  df-ablo 27955  df-vc 27969  df-nv 28002  df-va 28005  df-ba 28006  df-sm 28007  df-0v 28008  df-vs 28009  df-nmcv 28010  df-ssp 28132  df-ph 28223  df-cbn 28274
This theorem is referenced by:  minvecolem4  28291
  Copyright terms: Public domain W3C validator