MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4c Structured version   Visualization version   GIF version

Theorem minvecolem4c 30132
Description: Lemma for minveco 30137. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSetβ€˜π‘ˆ)
minveco.m 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
minveco.n 𝑁 = (normCVβ€˜π‘ˆ)
minveco.y π‘Œ = (BaseSetβ€˜π‘Š)
minveco.u (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
minveco.w (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
minveco.a (πœ‘ β†’ 𝐴 ∈ 𝑋)
minveco.d 𝐷 = (IndMetβ€˜π‘ˆ)
minveco.j 𝐽 = (MetOpenβ€˜π·)
minveco.r 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (πœ‘ β†’ 𝐹:β„•βŸΆπ‘Œ)
minveco.1 ((πœ‘ ∧ 𝑛 ∈ β„•) β†’ ((𝐴𝐷(πΉβ€˜π‘›))↑2) ≀ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4c (πœ‘ β†’ 𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   πœ‘,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,π‘ˆ   𝑦,π‘Š   𝑛,𝑋   𝑛,π‘Œ,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   π‘ˆ(𝑛)   𝑀(𝑛)   𝑁(𝑛)   π‘Š(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4c
Dummy variables π‘₯ 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minveco.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minveco.x . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
3 minveco.m . . . . 5 𝑀 = ( βˆ’π‘£ β€˜π‘ˆ)
4 minveco.n . . . . 5 𝑁 = (normCVβ€˜π‘ˆ)
5 minveco.y . . . . 5 π‘Œ = (BaseSetβ€˜π‘Š)
6 minveco.u . . . . 5 (πœ‘ β†’ π‘ˆ ∈ CPreHilOLD)
7 minveco.w . . . . 5 (πœ‘ β†’ π‘Š ∈ ((SubSpβ€˜π‘ˆ) ∩ CBan))
8 minveco.a . . . . 5 (πœ‘ β†’ 𝐴 ∈ 𝑋)
9 minveco.d . . . . 5 𝐷 = (IndMetβ€˜π‘ˆ)
10 minveco.j . . . . 5 𝐽 = (MetOpenβ€˜π·)
11 minveco.r . . . . 5 𝑅 = ran (𝑦 ∈ π‘Œ ↦ (π‘β€˜(𝐴𝑀𝑦)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem1 30127 . . . 4 (πœ‘ β†’ (𝑅 βŠ† ℝ ∧ 𝑅 β‰  βˆ… ∧ βˆ€π‘€ ∈ 𝑅 0 ≀ 𝑀))
1312simp1d 1143 . . 3 (πœ‘ β†’ 𝑅 βŠ† ℝ)
1412simp2d 1144 . . 3 (πœ‘ β†’ 𝑅 β‰  βˆ…)
15 0re 11216 . . . 4 0 ∈ ℝ
1612simp3d 1145 . . . 4 (πœ‘ β†’ βˆ€π‘€ ∈ 𝑅 0 ≀ 𝑀)
17 breq1 5152 . . . . . 6 (π‘₯ = 0 β†’ (π‘₯ ≀ 𝑀 ↔ 0 ≀ 𝑀))
1817ralbidv 3178 . . . . 5 (π‘₯ = 0 β†’ (βˆ€π‘€ ∈ 𝑅 π‘₯ ≀ 𝑀 ↔ βˆ€π‘€ ∈ 𝑅 0 ≀ 𝑀))
1918rspcev 3613 . . . 4 ((0 ∈ ℝ ∧ βˆ€π‘€ ∈ 𝑅 0 ≀ 𝑀) β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘€ ∈ 𝑅 π‘₯ ≀ 𝑀)
2015, 16, 19sylancr 588 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘€ ∈ 𝑅 π‘₯ ≀ 𝑀)
21 infrecl 12196 . . 3 ((𝑅 βŠ† ℝ ∧ 𝑅 β‰  βˆ… ∧ βˆƒπ‘₯ ∈ ℝ βˆ€π‘€ ∈ 𝑅 π‘₯ ≀ 𝑀) β†’ inf(𝑅, ℝ, < ) ∈ ℝ)
2213, 14, 20, 21syl3anc 1372 . 2 (πœ‘ β†’ inf(𝑅, ℝ, < ) ∈ ℝ)
231, 22eqeltrid 2838 1 (πœ‘ β†’ 𝑆 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  infcinf 9436  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   < clt 11248   ≀ cle 11249   / cdiv 11871  β„•cn 12212  2c2 12267  β†‘cexp 14027  MetOpencmopn 20934  BaseSetcba 29839   βˆ’π‘£ cnsb 29842  normCVcnmcv 29843  IndMetcims 29844  SubSpcss 29974  CPreHilOLDccphlo 30065  CBanccbn 30115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749  df-ablo 29798  df-vc 29812  df-nv 29845  df-va 29848  df-ba 29849  df-sm 29850  df-0v 29851  df-vs 29852  df-nmcv 29853  df-ssp 29975  df-ph 30066  df-cbn 30116
This theorem is referenced by:  minvecolem4  30133
  Copyright terms: Public domain W3C validator