| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minvecolem4c | Structured version Visualization version GIF version | ||
| Description: Lemma for minveco 30885. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| minveco.d | ⊢ 𝐷 = (IndMet‘𝑈) |
| minveco.j | ⊢ 𝐽 = (MetOpen‘𝐷) |
| minveco.r | ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| minveco.s | ⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| minveco.f | ⊢ (𝜑 → 𝐹:ℕ⟶𝑌) |
| minveco.1 | ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹‘𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛))) |
| Ref | Expression |
|---|---|
| minvecolem4c | ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.s | . 2 ⊢ 𝑆 = inf(𝑅, ℝ, < ) | |
| 2 | minveco.x | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | minveco.m | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 4 | minveco.n | . . . . 5 ⊢ 𝑁 = (normCV‘𝑈) | |
| 5 | minveco.y | . . . . 5 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 6 | minveco.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 7 | minveco.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 8 | minveco.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | minveco.d | . . . . 5 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 10 | minveco.j | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 11 | minveco.r | . . . . 5 ⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) | |
| 12 | 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | minvecolem1 30875 | . . . 4 ⊢ (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 13 | 12 | simp1d 1142 | . . 3 ⊢ (𝜑 → 𝑅 ⊆ ℝ) |
| 14 | 12 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝑅 ≠ ∅) |
| 15 | 0re 11125 | . . . 4 ⊢ 0 ∈ ℝ | |
| 16 | 12 | simp3d 1144 | . . . 4 ⊢ (𝜑 → ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) |
| 17 | breq1 5098 | . . . . . 6 ⊢ (𝑥 = 0 → (𝑥 ≤ 𝑤 ↔ 0 ≤ 𝑤)) | |
| 18 | 17 | ralbidv 3156 | . . . . 5 ⊢ (𝑥 = 0 → (∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤)) |
| 19 | 18 | rspcev 3573 | . . . 4 ⊢ ((0 ∈ ℝ ∧ ∀𝑤 ∈ 𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 20 | 15, 16, 19 | sylancr 587 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) |
| 21 | infrecl 12115 | . . 3 ⊢ ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝑅 𝑥 ≤ 𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ) | |
| 22 | 13, 14, 20, 21 | syl3anc 1373 | . 2 ⊢ (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ) |
| 23 | 1, 22 | eqeltrid 2837 | 1 ⊢ (𝜑 → 𝑆 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 ↦ cmpt 5176 ran crn 5622 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 infcinf 9336 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 < clt 11157 ≤ cle 11158 / cdiv 11785 ℕcn 12136 2c2 12191 ↑cexp 13975 MetOpencmopn 21290 BaseSetcba 30587 −𝑣 cnsb 30590 normCVcnmcv 30591 IndMetcims 30592 SubSpcss 30722 CPreHilOLDccphlo 30813 CBanccbn 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-grpo 30494 df-gid 30495 df-ginv 30496 df-gdiv 30497 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-vs 30600 df-nmcv 30601 df-ssp 30723 df-ph 30814 df-cbn 30864 |
| This theorem is referenced by: minvecolem4 30881 |
| Copyright terms: Public domain | W3C validator |