Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem4c Structured version   Visualization version   GIF version

Theorem minvecolem4c 28665
 Description: Lemma for minveco 28670. The infimum of the distances to 𝐴 is a real number. (Contributed by Mario Carneiro, 16-Jun-2014.) (Revised by AV, 4-Oct-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
minveco.s 𝑆 = inf(𝑅, ℝ, < )
minveco.f (𝜑𝐹:ℕ⟶𝑌)
minveco.1 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝐷(𝐹𝑛))↑2) ≤ ((𝑆↑2) + (1 / 𝑛)))
Assertion
Ref Expression
minvecolem4c (𝜑𝑆 ∈ ℝ)
Distinct variable groups:   𝑦,𝑛,𝐹   𝑛,𝐽,𝑦   𝑦,𝑀   𝑦,𝑁   𝜑,𝑛,𝑦   𝑆,𝑛,𝑦   𝐴,𝑛,𝑦   𝐷,𝑛,𝑦   𝑦,𝑈   𝑦,𝑊   𝑛,𝑋   𝑛,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦,𝑛)   𝑈(𝑛)   𝑀(𝑛)   𝑁(𝑛)   𝑊(𝑛)   𝑋(𝑦)

Proof of Theorem minvecolem4c
Dummy variables 𝑥 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minveco.s . 2 𝑆 = inf(𝑅, ℝ, < )
2 minveco.x . . . . 5 𝑋 = (BaseSet‘𝑈)
3 minveco.m . . . . 5 𝑀 = ( −𝑣𝑈)
4 minveco.n . . . . 5 𝑁 = (normCV𝑈)
5 minveco.y . . . . 5 𝑌 = (BaseSet‘𝑊)
6 minveco.u . . . . 5 (𝜑𝑈 ∈ CPreHilOLD)
7 minveco.w . . . . 5 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
8 minveco.a . . . . 5 (𝜑𝐴𝑋)
9 minveco.d . . . . 5 𝐷 = (IndMet‘𝑈)
10 minveco.j . . . . 5 𝐽 = (MetOpen‘𝐷)
11 minveco.r . . . . 5 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
122, 3, 4, 5, 6, 7, 8, 9, 10, 11minvecolem1 28660 . . . 4 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
1312simp1d 1139 . . 3 (𝜑𝑅 ⊆ ℝ)
1412simp2d 1140 . . 3 (𝜑𝑅 ≠ ∅)
15 0re 10636 . . . 4 0 ∈ ℝ
1612simp3d 1141 . . . 4 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
17 breq1 5036 . . . . . 6 (𝑥 = 0 → (𝑥𝑤 ↔ 0 ≤ 𝑤))
1817ralbidv 3165 . . . . 5 (𝑥 = 0 → (∀𝑤𝑅 𝑥𝑤 ↔ ∀𝑤𝑅 0 ≤ 𝑤))
1918rspcev 3574 . . . 4 ((0 ∈ ℝ ∧ ∀𝑤𝑅 0 ≤ 𝑤) → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
2015, 16, 19sylancr 590 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤)
21 infrecl 11614 . . 3 ((𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝑅 𝑥𝑤) → inf(𝑅, ℝ, < ) ∈ ℝ)
2213, 14, 20, 21syl3anc 1368 . 2 (𝜑 → inf(𝑅, ℝ, < ) ∈ ℝ)
231, 22eqeltrid 2897 1 (𝜑𝑆 ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109  ∃wrex 3110   ∩ cin 3883   ⊆ wss 3884  ∅c0 4246   class class class wbr 5033   ↦ cmpt 5113  ran crn 5524  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  infcinf 8893  ℝcr 10529  0cc0 10530  1c1 10531   + caddc 10533   < clt 10668   ≤ cle 10669   / cdiv 11290  ℕcn 11629  2c2 11684  ↑cexp 13429  MetOpencmopn 20084  BaseSetcba 28372   −𝑣 cnsb 28375  normCVcnmcv 28376  IndMetcims 28377  SubSpcss 28507  CPreHilOLDccphlo 28598  CBanccbn 28648 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-grpo 28279  df-gid 28280  df-ginv 28281  df-gdiv 28282  df-ablo 28331  df-vc 28345  df-nv 28378  df-va 28381  df-ba 28382  df-sm 28383  df-0v 28384  df-vs 28385  df-nmcv 28386  df-ssp 28508  df-ph 28599  df-cbn 28649 This theorem is referenced by:  minvecolem4  28666
 Copyright terms: Public domain W3C validator