| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveco | Structured version Visualization version GIF version | ||
| Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| minveco | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | minveco.m | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 3 | minveco.n | . 2 ⊢ 𝑁 = (normCV‘𝑈) | |
| 4 | minveco.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 5 | minveco.u | . 2 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 6 | minveco.w | . 2 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 7 | minveco.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 8 | eqid 2733 | . 2 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 9 | eqid 2733 | . 2 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 10 | oveq2 7363 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦)) | |
| 11 | 10 | fveq2d 6835 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦))) |
| 12 | 11 | cbvmptv 5199 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 13 | 12 | rneqi 5883 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 14 | eqid 2733 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14 | minvecolem7 30884 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃!wreu 3345 ∩ cin 3897 class class class wbr 5095 ↦ cmpt 5176 ran crn 5622 ‘cfv 6489 (class class class)co 7355 infcinf 9336 ℝcr 11016 < clt 11157 ≤ cle 11158 MetOpencmopn 21290 BaseSetcba 30587 −𝑣 cnsb 30590 normCVcnmcv 30591 IndMetcims 30592 SubSpcss 30722 CPreHilOLDccphlo 30813 CBanccbn 30863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cc 10337 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 ax-addf 11096 ax-mulf 11097 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9306 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-n0 12393 df-z 12480 df-uz 12743 df-q 12853 df-rp 12897 df-xneg 13017 df-xadd 13018 df-xmul 13019 df-ico 13258 df-icc 13259 df-fl 13703 df-seq 13916 df-exp 13976 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-rest 17333 df-topgen 17354 df-psmet 21292 df-xmet 21293 df-met 21294 df-bl 21295 df-mopn 21296 df-fbas 21297 df-fg 21298 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-lm 23164 df-haus 23250 df-fil 23781 df-fm 23873 df-flim 23874 df-flf 23875 df-cfil 25202 df-cau 25203 df-cmet 25204 df-grpo 30494 df-gid 30495 df-ginv 30496 df-gdiv 30497 df-ablo 30546 df-vc 30560 df-nv 30593 df-va 30596 df-ba 30597 df-sm 30598 df-0v 30599 df-vs 30600 df-nmcv 30601 df-ims 30602 df-ssp 30723 df-ph 30814 df-cbn 30864 |
| This theorem is referenced by: pjhthlem2 31393 |
| Copyright terms: Public domain | W3C validator |