| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveco | Structured version Visualization version GIF version | ||
| Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| minveco | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | minveco.m | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 3 | minveco.n | . 2 ⊢ 𝑁 = (normCV‘𝑈) | |
| 4 | minveco.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 5 | minveco.u | . 2 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 6 | minveco.w | . 2 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 7 | minveco.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 8 | eqid 2729 | . 2 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 9 | eqid 2729 | . 2 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 10 | oveq2 7361 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦)) | |
| 11 | 10 | fveq2d 6830 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦))) |
| 12 | 11 | cbvmptv 5199 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 13 | 12 | rneqi 5883 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 14 | eqid 2729 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14 | minvecolem7 30846 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3343 ∩ cin 3904 class class class wbr 5095 ↦ cmpt 5176 ran crn 5624 ‘cfv 6486 (class class class)co 7353 infcinf 9350 ℝcr 11027 < clt 11168 ≤ cle 11169 MetOpencmopn 21270 BaseSetcba 30549 −𝑣 cnsb 30552 normCVcnmcv 30553 IndMetcims 30554 SubSpcss 30684 CPreHilOLDccphlo 30775 CBanccbn 30825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cc 10348 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 ax-mulf 11108 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-n0 12404 df-z 12491 df-uz 12755 df-q 12869 df-rp 12913 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ico 13273 df-icc 13274 df-fl 13715 df-seq 13928 df-exp 13988 df-cj 15025 df-re 15026 df-im 15027 df-sqrt 15161 df-abs 15162 df-rest 17345 df-topgen 17366 df-psmet 21272 df-xmet 21273 df-met 21274 df-bl 21275 df-mopn 21276 df-fbas 21277 df-fg 21278 df-top 22798 df-topon 22815 df-bases 22850 df-cld 22923 df-ntr 22924 df-cls 22925 df-nei 23002 df-lm 23133 df-haus 23219 df-fil 23750 df-fm 23842 df-flim 23843 df-flf 23844 df-cfil 25172 df-cau 25173 df-cmet 25174 df-grpo 30456 df-gid 30457 df-ginv 30458 df-gdiv 30459 df-ablo 30508 df-vc 30522 df-nv 30555 df-va 30558 df-ba 30559 df-sm 30560 df-0v 30561 df-vs 30562 df-nmcv 30563 df-ims 30564 df-ssp 30685 df-ph 30776 df-cbn 30826 |
| This theorem is referenced by: pjhthlem2 31355 |
| Copyright terms: Public domain | W3C validator |