| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minveco | Structured version Visualization version GIF version | ||
| Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minveco.x | ⊢ 𝑋 = (BaseSet‘𝑈) |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| minveco.n | ⊢ 𝑁 = (normCV‘𝑈) |
| minveco.y | ⊢ 𝑌 = (BaseSet‘𝑊) |
| minveco.u | ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) |
| minveco.w | ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) |
| minveco.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| minveco | ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | . 2 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | minveco.m | . 2 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 3 | minveco.n | . 2 ⊢ 𝑁 = (normCV‘𝑈) | |
| 4 | minveco.y | . 2 ⊢ 𝑌 = (BaseSet‘𝑊) | |
| 5 | minveco.u | . 2 ⊢ (𝜑 → 𝑈 ∈ CPreHilOLD) | |
| 6 | minveco.w | . 2 ⊢ (𝜑 → 𝑊 ∈ ((SubSp‘𝑈) ∩ CBan)) | |
| 7 | minveco.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 8 | eqid 2731 | . 2 ⊢ (IndMet‘𝑈) = (IndMet‘𝑈) | |
| 9 | eqid 2731 | . 2 ⊢ (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈)) | |
| 10 | oveq2 7349 | . . . . 5 ⊢ (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦)) | |
| 11 | 10 | fveq2d 6821 | . . . 4 ⊢ (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦))) |
| 12 | 11 | cbvmptv 5190 | . . 3 ⊢ (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 13 | 12 | rneqi 5872 | . 2 ⊢ ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) |
| 14 | eqid 2731 | . 2 ⊢ inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗 ∈ 𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14 | minvecolem7 30855 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ 𝑌 ∀𝑦 ∈ 𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃!wreu 3344 ∩ cin 3896 class class class wbr 5086 ↦ cmpt 5167 ran crn 5612 ‘cfv 6476 (class class class)co 7341 infcinf 9320 ℝcr 11000 < clt 11141 ≤ cle 11142 MetOpencmopn 21276 BaseSetcba 30558 −𝑣 cnsb 30561 normCVcnmcv 30562 IndMetcims 30563 SubSpcss 30693 CPreHilOLDccphlo 30784 CBanccbn 30834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cc 10321 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fi 9290 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ico 13246 df-icc 13247 df-fl 13691 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-rest 17321 df-topgen 17342 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-fbas 21283 df-fg 21284 df-top 22804 df-topon 22821 df-bases 22856 df-cld 22929 df-ntr 22930 df-cls 22931 df-nei 23008 df-lm 23139 df-haus 23225 df-fil 23756 df-fm 23848 df-flim 23849 df-flf 23850 df-cfil 25177 df-cau 25178 df-cmet 25179 df-grpo 30465 df-gid 30466 df-ginv 30467 df-gdiv 30468 df-ablo 30517 df-vc 30531 df-nv 30564 df-va 30567 df-ba 30568 df-sm 30569 df-0v 30570 df-vs 30571 df-nmcv 30572 df-ims 30573 df-ssp 30694 df-ph 30785 df-cbn 30835 |
| This theorem is referenced by: pjhthlem2 31364 |
| Copyright terms: Public domain | W3C validator |