MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveco Structured version   Visualization version   GIF version

Theorem minveco 30561
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
Assertion
Ref Expression
minveco (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem minveco
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . 2 𝑋 = (BaseSet‘𝑈)
2 minveco.m . 2 𝑀 = ( −𝑣𝑈)
3 minveco.n . 2 𝑁 = (normCV𝑈)
4 minveco.y . 2 𝑌 = (BaseSet‘𝑊)
5 minveco.u . 2 (𝜑𝑈 ∈ CPreHilOLD)
6 minveco.w . 2 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
7 minveco.a . 2 (𝜑𝐴𝑋)
8 eqid 2724 . 2 (IndMet‘𝑈) = (IndMet‘𝑈)
9 eqid 2724 . 2 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
10 oveq2 7409 . . . . 5 (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦))
1110fveq2d 6885 . . . 4 (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦)))
1211cbvmptv 5251 . . 3 (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
1312rneqi 5926 . 2 ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
14 eqid 2724 . 2 inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < )
151, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14minvecolem7 30560 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3053  ∃!wreu 3366  cin 3939   class class class wbr 5138  cmpt 5221  ran crn 5667  cfv 6533  (class class class)co 7401  infcinf 9431  cr 11104   < clt 11244  cle 11245  MetOpencmopn 21213  BaseSetcba 30263  𝑣 cnsb 30266  normCVcnmcv 30267  IndMetcims 30268  SubSpcss 30398  CPreHilOLDccphlo 30489  CBanccbn 30539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cc 10425  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184  ax-mulf 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fi 9401  df-sup 9432  df-inf 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ico 13326  df-icc 13327  df-fl 13753  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-rest 17364  df-topgen 17385  df-psmet 21215  df-xmet 21216  df-met 21217  df-bl 21218  df-mopn 21219  df-fbas 21220  df-fg 21221  df-top 22706  df-topon 22723  df-bases 22759  df-cld 22833  df-ntr 22834  df-cls 22835  df-nei 22912  df-lm 23043  df-haus 23129  df-fil 23660  df-fm 23752  df-flim 23753  df-flf 23754  df-cfil 25093  df-cau 25094  df-cmet 25095  df-grpo 30170  df-gid 30171  df-ginv 30172  df-gdiv 30173  df-ablo 30222  df-vc 30236  df-nv 30269  df-va 30272  df-ba 30273  df-sm 30274  df-0v 30275  df-vs 30276  df-nmcv 30277  df-ims 30278  df-ssp 30399  df-ph 30490  df-cbn 30540
This theorem is referenced by:  pjhthlem2  31069
  Copyright terms: Public domain W3C validator