MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveco Structured version   Visualization version   GIF version

Theorem minveco 28660
Description: Minimizing vector theorem, or the Hilbert projection theorem. There is exactly one vector in a complete subspace 𝑊 that minimizes the distance to an arbitrary vector 𝐴 in a parent inner product space. Theorem 3.3-1 of [Kreyszig] p. 144, specialized to subspaces instead of convex subsets. (Contributed by NM, 11-Apr-2008.) (Proof shortened by Mario Carneiro, 9-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
Assertion
Ref Expression
minveco (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐴,𝑦   𝑥,𝑈,𝑦   𝑥,𝑊,𝑦   𝑥,𝑋   𝑥,𝑌,𝑦
Allowed substitution hint:   𝑋(𝑦)

Proof of Theorem minveco
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 minveco.x . 2 𝑋 = (BaseSet‘𝑈)
2 minveco.m . 2 𝑀 = ( −𝑣𝑈)
3 minveco.n . 2 𝑁 = (normCV𝑈)
4 minveco.y . 2 𝑌 = (BaseSet‘𝑊)
5 minveco.u . 2 (𝜑𝑈 ∈ CPreHilOLD)
6 minveco.w . 2 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
7 minveco.a . 2 (𝜑𝐴𝑋)
8 eqid 2821 . 2 (IndMet‘𝑈) = (IndMet‘𝑈)
9 eqid 2821 . 2 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
10 oveq2 7163 . . . . 5 (𝑗 = 𝑦 → (𝐴𝑀𝑗) = (𝐴𝑀𝑦))
1110fveq2d 6673 . . . 4 (𝑗 = 𝑦 → (𝑁‘(𝐴𝑀𝑗)) = (𝑁‘(𝐴𝑀𝑦)))
1211cbvmptv 5168 . . 3 (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
1312rneqi 5806 . 2 ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))) = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
14 eqid 2821 . 2 inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < ) = inf(ran (𝑗𝑌 ↦ (𝑁‘(𝐴𝑀𝑗))), ℝ, < )
151, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14minvecolem7 28659 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴𝑀𝑥)) ≤ (𝑁‘(𝐴𝑀𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wral 3138  ∃!wreu 3140  cin 3934   class class class wbr 5065  cmpt 5145  ran crn 5555  cfv 6354  (class class class)co 7155  infcinf 8904  cr 10535   < clt 10674  cle 10675  MetOpencmopn 20534  BaseSetcba 28362  𝑣 cnsb 28365  normCVcnmcv 28366  IndMetcims 28367  SubSpcss 28497  CPreHilOLDccphlo 28588  CBanccbn 28638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fi 8874  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ico 12743  df-icc 12744  df-fl 13161  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-rest 16695  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-top 21501  df-topon 21518  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lm 21836  df-haus 21922  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-cfil 23857  df-cau 23858  df-cmet 23859  df-grpo 28269  df-gid 28270  df-ginv 28271  df-gdiv 28272  df-ablo 28321  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-vs 28375  df-nmcv 28376  df-ims 28377  df-ssp 28498  df-ph 28589  df-cbn 28639
This theorem is referenced by:  pjhthlem2  29168
  Copyright terms: Public domain W3C validator