| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc2 | Structured version Visualization version GIF version | ||
| Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meaiininc2.f | ⊢ Ⅎ𝑛𝜑 |
| meaiininc2.p | ⊢ Ⅎ𝑘𝜑 |
| meaiininc2.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meaiininc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| meaiininc2.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
| meaiininc2.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
| meaiininc2.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
| meaiininc2.k | ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
| meaiininc2.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
| Ref | Expression |
|---|---|
| meaiininc2 | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meaiininc2.k | . 2 ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
| 2 | meaiininc2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 3 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) | |
| 4 | meaiininc2.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
| 5 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
| 6 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ∈ ℝ | |
| 7 | 4, 5, 6 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
| 8 | meaiininc2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 9 | 8 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑀 ∈ Meas) |
| 10 | meaiininc2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 11 | 10 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑁 ∈ ℤ) |
| 12 | meaiininc2.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
| 13 | meaiininc2.e | . . . . . 6 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
| 14 | 13 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝐸:𝑍⟶dom 𝑀) |
| 15 | meaiininc2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
| 16 | 15 | 3ad2antl1 1186 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
| 17 | id 22 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) | |
| 18 | 17, 12 | eleqtrdi 2838 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 19 | 18 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑘 ∈ (ℤ≥‘𝑁)) |
| 20 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
| 21 | meaiininc2.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
| 22 | 7, 9, 11, 12, 14, 16, 19, 20, 21 | meaiininc 46485 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| 23 | 22 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 → ((𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
| 24 | 2, 3, 23 | rexlimd 3244 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)))) |
| 25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 ∩ ciin 4956 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 ℤcz 12529 ℤ≥cuz 12793 ⇝ cli 15450 Meascmea 46447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-salg 46307 df-sumge0 46361 df-mea 46448 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |