![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc2 | Structured version Visualization version GIF version |
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meaiininc2.f | ⊢ Ⅎ𝑛𝜑 |
meaiininc2.p | ⊢ Ⅎ𝑘𝜑 |
meaiininc2.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiininc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiininc2.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiininc2.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiininc2.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
meaiininc2.k | ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
meaiininc2.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiininc2 | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiininc2.k | . 2 ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
2 | meaiininc2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1916 | . . 3 ⊢ Ⅎ𝑘 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) | |
4 | meaiininc2.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
5 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
6 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ∈ ℝ | |
7 | 4, 5, 6 | nf3an 1903 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
8 | meaiininc2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
9 | 8 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑀 ∈ Meas) |
10 | meaiininc2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
11 | 10 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑁 ∈ ℤ) |
12 | meaiininc2.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
13 | meaiininc2.e | . . . . . 6 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
14 | 13 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝐸:𝑍⟶dom 𝑀) |
15 | meaiininc2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
16 | 15 | 3ad2antl1 1184 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
17 | id 22 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) | |
18 | 17, 12 | eleqtrdi 2842 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑁)) |
19 | 18 | 3ad2ant2 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑘 ∈ (ℤ≥‘𝑁)) |
20 | simp3 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
21 | meaiininc2.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
22 | 7, 9, 11, 12, 14, 16, 19, 20, 21 | meaiininc 45503 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
23 | 22 | 3exp 1118 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 → ((𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
24 | 2, 3, 23 | rexlimd 3262 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)))) |
25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 ∃wrex 3069 ⊆ wss 3949 ∩ ciin 4999 class class class wbr 5149 ↦ cmpt 5232 dom cdm 5677 ⟶wf 6540 ‘cfv 6544 (class class class)co 7412 ℝcr 11112 1c1 11114 + caddc 11116 ℤcz 12563 ℤ≥cuz 12827 ⇝ cli 15433 Meascmea 45465 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-disj 5115 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-omul 8474 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-xadd 13098 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-salg 45325 df-sumge0 45379 df-mea 45466 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |