Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meaiininc2 | Structured version Visualization version GIF version |
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meaiininc2.f | ⊢ Ⅎ𝑛𝜑 |
meaiininc2.p | ⊢ Ⅎ𝑘𝜑 |
meaiininc2.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meaiininc2.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
meaiininc2.z | ⊢ 𝑍 = (ℤ≥‘𝑁) |
meaiininc2.e | ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) |
meaiininc2.i | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
meaiininc2.k | ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
meaiininc2.s | ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) |
Ref | Expression |
---|---|
meaiininc2 | ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meaiininc2.k | . 2 ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
2 | meaiininc2.p | . . 3 ⊢ Ⅎ𝑘𝜑 | |
3 | nfv 1918 | . . 3 ⊢ Ⅎ𝑘 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) | |
4 | meaiininc2.f | . . . . . 6 ⊢ Ⅎ𝑛𝜑 | |
5 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑛 𝑘 ∈ 𝑍 | |
6 | nfv 1918 | . . . . . 6 ⊢ Ⅎ𝑛(𝑀‘(𝐸‘𝑘)) ∈ ℝ | |
7 | 4, 5, 6 | nf3an 1905 | . . . . 5 ⊢ Ⅎ𝑛(𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) |
8 | meaiininc2.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
9 | 8 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑀 ∈ Meas) |
10 | meaiininc2.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
11 | 10 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑁 ∈ ℤ) |
12 | meaiininc2.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑁) | |
13 | meaiininc2.e | . . . . . 6 ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) | |
14 | 13 | 3ad2ant1 1131 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝐸:𝑍⟶dom 𝑀) |
15 | meaiininc2.i | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) | |
16 | 15 | 3ad2antl1 1183 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) |
17 | id 22 | . . . . . . 7 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ 𝑍) | |
18 | 17, 12 | eleqtrdi 2849 | . . . . . 6 ⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ (ℤ≥‘𝑁)) |
19 | 18 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑘 ∈ (ℤ≥‘𝑁)) |
20 | simp3 1136 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → (𝑀‘(𝐸‘𝑘)) ∈ ℝ) | |
21 | meaiininc2.s | . . . . 5 ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) | |
22 | 7, 9, 11, 12, 14, 16, 19, 20, 21 | meaiininc 43915 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍 ∧ (𝑀‘(𝐸‘𝑘)) ∈ ℝ) → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
23 | 22 | 3exp 1117 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑍 → ((𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))))) |
24 | 2, 3, 23 | rexlimd 3245 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛)))) |
25 | 1, 24 | mpd 15 | 1 ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∩ ciin 4922 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 Meascmea 43877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-xadd 12778 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-salg 43740 df-sumge0 43791 df-mea 43878 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |