Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaiininc2 Structured version   Visualization version   GIF version

Theorem meaiininc2 45139
Description: Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meaiininc2.f 𝑛𝜑
meaiininc2.p 𝑘𝜑
meaiininc2.m (𝜑𝑀 ∈ Meas)
meaiininc2.n (𝜑𝑁 ∈ ℤ)
meaiininc2.z 𝑍 = (ℤ𝑁)
meaiininc2.e (𝜑𝐸:𝑍⟶dom 𝑀)
meaiininc2.i ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
meaiininc2.k (𝜑 → ∃𝑘𝑍 (𝑀‘(𝐸𝑘)) ∈ ℝ)
meaiininc2.s 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
Assertion
Ref Expression
meaiininc2 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Distinct variable groups:   𝑘,𝐸,𝑛   𝑘,𝑀,𝑛   𝑆,𝑘   𝑘,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑘,𝑛)   𝑆(𝑛)   𝑁(𝑘,𝑛)

Proof of Theorem meaiininc2
StepHypRef Expression
1 meaiininc2.k . 2 (𝜑 → ∃𝑘𝑍 (𝑀‘(𝐸𝑘)) ∈ ℝ)
2 meaiininc2.p . . 3 𝑘𝜑
3 nfv 1918 . . 3 𝑘 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛))
4 meaiininc2.f . . . . . 6 𝑛𝜑
5 nfv 1918 . . . . . 6 𝑛 𝑘𝑍
6 nfv 1918 . . . . . 6 𝑛(𝑀‘(𝐸𝑘)) ∈ ℝ
74, 5, 6nf3an 1905 . . . . 5 𝑛(𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ)
8 meaiininc2.m . . . . . 6 (𝜑𝑀 ∈ Meas)
983ad2ant1 1134 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → 𝑀 ∈ Meas)
10 meaiininc2.n . . . . . 6 (𝜑𝑁 ∈ ℤ)
11103ad2ant1 1134 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → 𝑁 ∈ ℤ)
12 meaiininc2.z . . . . 5 𝑍 = (ℤ𝑁)
13 meaiininc2.e . . . . . 6 (𝜑𝐸:𝑍⟶dom 𝑀)
14133ad2ant1 1134 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → 𝐸:𝑍⟶dom 𝑀)
15 meaiininc2.i . . . . . 6 ((𝜑𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
16153ad2antl1 1186 . . . . 5 (((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) ∧ 𝑛𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸𝑛))
17 id 22 . . . . . . 7 (𝑘𝑍𝑘𝑍)
1817, 12eleqtrdi 2844 . . . . . 6 (𝑘𝑍𝑘 ∈ (ℤ𝑁))
19183ad2ant2 1135 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → 𝑘 ∈ (ℤ𝑁))
20 simp3 1139 . . . . 5 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → (𝑀‘(𝐸𝑘)) ∈ ℝ)
21 meaiininc2.s . . . . 5 𝑆 = (𝑛𝑍 ↦ (𝑀‘(𝐸𝑛)))
227, 9, 11, 12, 14, 16, 19, 20, 21meaiininc 45138 . . . 4 ((𝜑𝑘𝑍 ∧ (𝑀‘(𝐸𝑘)) ∈ ℝ) → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
23223exp 1120 . . 3 (𝜑 → (𝑘𝑍 → ((𝑀‘(𝐸𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))))
242, 3, 23rexlimd 3264 . 2 (𝜑 → (∃𝑘𝑍 (𝑀‘(𝐸𝑘)) ∈ ℝ → 𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛))))
251, 24mpd 15 1 (𝜑𝑆 ⇝ (𝑀 𝑛𝑍 (𝐸𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wnf 1786  wcel 2107  wrex 3071  wss 3947   ciin 4997   class class class wbr 5147  cmpt 5230  dom cdm 5675  wf 6536  cfv 6540  (class class class)co 7404  cr 11105  1c1 11107   + caddc 11109  cz 12554  cuz 12818  cli 15424  Meascmea 45100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-oadd 8465  df-omul 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-salg 44960  df-sumge0 45014  df-mea 45101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator