MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sfincut Structured version   Visualization version   GIF version

Theorem n0sfincut 28282
Description: The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025.)
Assertion
Ref Expression
n0sfincut ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s)

Proof of Theorem n0sfincut
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . 4 (𝐴 = ∅ → (𝐴 |s ∅) = (∅ |s ∅))
2 df-0s 27768 . . . . 5 0s = (∅ |s ∅)
3 0n0s 28258 . . . . 5 0s ∈ ℕ0s
42, 3eqeltrri 2828 . . . 4 (∅ |s ∅) ∈ ℕ0s
51, 4eqeltrdi 2839 . . 3 (𝐴 = ∅ → (𝐴 |s ∅) ∈ ℕ0s)
65a1d 25 . 2 (𝐴 = ∅ → ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s))
7 n0ssno 28249 . . . . . . . 8 0s No
8 sstr 3938 . . . . . . . 8 ((𝐴 ⊆ ℕ0s ∧ ℕ0s No ) → 𝐴 No )
97, 8mpan2 691 . . . . . . 7 (𝐴 ⊆ ℕ0s𝐴 No )
10 sltso 27615 . . . . . . 7 <s Or No
11 soss 5542 . . . . . . 7 (𝐴 No → ( <s Or No → <s Or 𝐴))
129, 10, 11mpisyl 21 . . . . . 6 (𝐴 ⊆ ℕ0s → <s Or 𝐴)
1312ad2antrl 728 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → <s Or 𝐴)
14 simprr 772 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
15 simpl 482 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
16 fimax2g 9170 . . . . 5 (( <s Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1713, 14, 15, 16syl3anc 1373 . . . 4 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
189ad2antrl 728 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 No )
1918adantr 480 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → 𝐴 No )
2019sselda 3929 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 No )
2118sselda 3929 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → 𝑥 No )
2221adantr 480 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 No )
23 slenlt 27691 . . . . . . . 8 ((𝑦 No 𝑥 No ) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦))
2420, 22, 23syl2anc 584 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦))
2524ralbidva 3153 . . . . . 6 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦 ≤s 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
26 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥) → 𝑥𝐴)
27 ssel2 3924 . . . . . . . . . . . 12 ((𝐴 No 𝑥𝐴) → 𝑥 No )
2818, 26, 27syl2an 596 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 No )
29 snelpwi 5383 . . . . . . . . . . 11 (𝑥 No → {𝑥} ∈ 𝒫 No )
30 nulssgt 27739 . . . . . . . . . . 11 ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅)
3128, 29, 303syl 18 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {𝑥} <<s ∅)
32 breq2 5093 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑥 ≤s 𝑤𝑥 ≤s 𝑥))
33 simprl 770 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥𝐴)
34 slerflex 27702 . . . . . . . . . . . . 13 (𝑥 No 𝑥 ≤s 𝑥)
3528, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 ≤s 𝑥)
3632, 33, 35rspcedvdw 3575 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∃𝑤𝐴 𝑥 ≤s 𝑤)
37 vex 3440 . . . . . . . . . . . 12 𝑥 ∈ V
38 breq1 5092 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 ≤s 𝑤𝑥 ≤s 𝑤))
3938rexbidv 3156 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (∃𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤𝐴 𝑥 ≤s 𝑤))
4037, 39ralsn 4631 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥}∃𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤𝐴 𝑥 ≤s 𝑤)
4136, 40sylibr 234 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ {𝑥}∃𝑤𝐴 𝑧 ≤s 𝑤)
42 ral0 4460 . . . . . . . . . . 11 𝑧 ∈ ∅ ∃𝑤 ∈ ∅ 𝑤 ≤s 𝑧
4342a1i 11 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ ∅ ∃𝑤 ∈ ∅ 𝑤 ≤s 𝑧)
44 simplrr 777 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 ∈ Fin)
45 snex 5372 . . . . . . . . . . . 12 {({𝑥} |s ∅)} ∈ V
4645a1i 11 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ∈ V)
4718adantr 480 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 No )
4831scutcld 27744 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈ No )
4948snssd 4758 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ⊆ No )
5047sselda 3929 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 No )
5128adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 No )
5248adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ({𝑥} |s ∅) ∈ No )
53 breq1 5092 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤s 𝑥𝑧 ≤s 𝑥))
54 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦 ≤s 𝑥)
55 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧𝐴)
5653, 54, 55rspcdva 3573 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 ≤s 𝑥)
5751, 34syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 ≤s 𝑥)
58 breq2 5093 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑥 ≤s 𝑧𝑥 ≤s 𝑥))
5937, 58rexsn 4632 . . . . . . . . . . . . . . . . 17 (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧𝑥 ≤s 𝑥)
6057, 59sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧)
6160orcd 873 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅)))
62 lltropt 27817 . . . . . . . . . . . . . . . . 17 ( L ‘𝑥) <<s ( R ‘𝑥)
6362a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ( L ‘𝑥) <<s ( R ‘𝑥))
6431adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → {𝑥} <<s ∅)
65 lrcut 27849 . . . . . . . . . . . . . . . . . 18 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
6651, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
6766eqcomd 2737 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
68 eqidd 2732 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ({𝑥} |s ∅) = ({𝑥} |s ∅))
6963, 64, 67, 68sltrecd 27763 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (𝑥 <s ({𝑥} |s ∅) ↔ (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅))))
7061, 69mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 <s ({𝑥} |s ∅))
7150, 51, 52, 56, 70slelttrd 27700 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 <s ({𝑥} |s ∅))
72 velsn 4589 . . . . . . . . . . . . . 14 (𝑤 ∈ {({𝑥} |s ∅)} ↔ 𝑤 = ({𝑥} |s ∅))
73 breq2 5093 . . . . . . . . . . . . . 14 (𝑤 = ({𝑥} |s ∅) → (𝑧 <s 𝑤𝑧 <s ({𝑥} |s ∅)))
7472, 73sylbi 217 . . . . . . . . . . . . 13 (𝑤 ∈ {({𝑥} |s ∅)} → (𝑧 <s 𝑤𝑧 <s ({𝑥} |s ∅)))
7571, 74syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (𝑤 ∈ {({𝑥} |s ∅)} → 𝑧 <s 𝑤))
76753impia 1117 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴𝑤 ∈ {({𝑥} |s ∅)}) → 𝑧 <s 𝑤)
7744, 46, 47, 49, 76ssltd 27731 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 <<s {({𝑥} |s ∅)})
78 snelpwi 5383 . . . . . . . . . . 11 (({𝑥} |s ∅) ∈ No → {({𝑥} |s ∅)} ∈ 𝒫 No )
79 nulssgt 27739 . . . . . . . . . . 11 ({({𝑥} |s ∅)} ∈ 𝒫 No → {({𝑥} |s ∅)} <<s ∅)
8048, 78, 793syl 18 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} <<s ∅)
8131, 41, 43, 77, 80cofcut1d 27865 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝐴 |s ∅))
8281eqcomd 2737 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) = ({𝑥} |s ∅))
83 simplrl 776 . . . . . . . . . . . . 13 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 ⊆ ℕ0s)
8483, 33sseldd 3930 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 ∈ ℕ0s)
85 peano2n0s 28259 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
8684, 85syl 17 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) ∈ ℕ0s)
87 n0scut 28262 . . . . . . . . . . 11 ((𝑥 +s 1s ) ∈ ℕ0s → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
8886, 87syl 17 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
89 1sno 27771 . . . . . . . . . . . . 13 1s No
90 pncans 28012 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9128, 89, 90sylancl 586 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9291sneqd 4585 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
9392oveq1d 7361 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
9488, 93eqtr2d 2767 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝑥 +s 1s ))
9594, 86eqeltrd 2831 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈ ℕ0s)
9682, 95eqeltrd 2831 . . . . . . 7 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) ∈ ℕ0s)
9796expr 456 . . . . . 6 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦 ≤s 𝑥 → (𝐴 |s ∅) ∈ ℕ0s))
9825, 97sylbird 260 . . . . 5 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈ ℕ0s))
9998rexlimdva 3133 . . . 4 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈ ℕ0s))
10017, 99mpd 15 . . 3 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → (𝐴 |s ∅) ∈ ℕ0s)
101100ex 412 . 2 (𝐴 ≠ ∅ → ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s))
1026, 101pm2.61ine 3011 1 ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547  {csn 4573   class class class wbr 5089   Or wor 5521  cfv 6481  (class class class)co 7346  Fincfn 8869   No csur 27578   <s cslt 27579   ≤s csle 27683   <<s csslt 27720   |s cscut 27722   0s c0s 27766   1s c1s 27767   L cleft 27786   R cright 27787   +s cadds 27902   -s csubs 27962  0scnn0s 28242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-en 8870  df-fin 8873  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-n0s 28244
This theorem is referenced by:  onsfi  28283
  Copyright terms: Public domain W3C validator