| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7412 |
. . . 4
⊢ (𝐴 = ∅ → (𝐴 |s ∅) = (∅ |s
∅)) |
| 2 | | df-0s 27788 |
. . . . 5
⊢
0s = (∅ |s ∅) |
| 3 | | 0n0s 28274 |
. . . . 5
⊢
0s ∈ ℕ0s |
| 4 | 2, 3 | eqeltrri 2831 |
. . . 4
⊢ (∅
|s ∅) ∈ ℕ0s |
| 5 | 1, 4 | eqeltrdi 2842 |
. . 3
⊢ (𝐴 = ∅ → (𝐴 |s ∅) ∈
ℕ0s) |
| 6 | 5 | a1d 25 |
. 2
⊢ (𝐴 = ∅ → ((𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin) →
(𝐴 |s ∅) ∈
ℕ0s)) |
| 7 | | n0ssno 28265 |
. . . . . . . 8
⊢
ℕ0s ⊆ No
|
| 8 | | sstr 3967 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℕ0s
∧ ℕ0s ⊆ No ) →
𝐴 ⊆ No ) |
| 9 | 7, 8 | mpan2 691 |
. . . . . . 7
⊢ (𝐴 ⊆ ℕ0s
→ 𝐴 ⊆ No ) |
| 10 | | sltso 27640 |
. . . . . . 7
⊢ <s Or
No |
| 11 | | soss 5581 |
. . . . . . 7
⊢ (𝐴 ⊆
No → ( <s Or No → <s Or
𝐴)) |
| 12 | 9, 10, 11 | mpisyl 21 |
. . . . . 6
⊢ (𝐴 ⊆ ℕ0s
→ <s Or 𝐴) |
| 13 | 12 | ad2antrl 728 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
<s Or 𝐴) |
| 14 | | simprr 772 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
𝐴 ∈
Fin) |
| 15 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
𝐴 ≠
∅) |
| 16 | | fimax2g 9294 |
. . . . 5
⊢ (( <s
Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 17 | 13, 14, 15, 16 | syl3anc 1373 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
| 18 | 9 | ad2antrl 728 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
𝐴 ⊆ No ) |
| 19 | 18 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) → 𝐴 ⊆ No
) |
| 20 | 19 | sselda 3958 |
. . . . . . . 8
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ No
) |
| 21 | 18 | sselda 3958 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) → 𝑥 ∈ No
) |
| 22 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ No
) |
| 23 | | slenlt 27716 |
. . . . . . . 8
⊢ ((𝑦 ∈
No ∧ 𝑥 ∈
No ) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦)) |
| 24 | 20, 22, 23 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦)) |
| 25 | 24 | ralbidva 3161 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦)) |
| 26 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥) → 𝑥 ∈ 𝐴) |
| 27 | | ssel2 3953 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆
No ∧ 𝑥 ∈
𝐴) → 𝑥 ∈
No ) |
| 28 | 18, 26, 27 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝑥 ∈ No
) |
| 29 | | snelpwi 5418 |
. . . . . . . . . . 11
⊢ (𝑥 ∈
No → {𝑥}
∈ 𝒫 No ) |
| 30 | | nulssgt 27762 |
. . . . . . . . . . 11
⊢ ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅) |
| 31 | 28, 29, 30 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → {𝑥} <<s ∅) |
| 32 | | breq2 5123 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑥 ≤s 𝑤 ↔ 𝑥 ≤s 𝑥)) |
| 33 | | simprl 770 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝑥 ∈ 𝐴) |
| 34 | | slerflex 27727 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈
No → 𝑥 ≤s
𝑥) |
| 35 | 28, 34 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝑥 ≤s 𝑥) |
| 36 | 32, 33, 35 | rspcedvdw 3604 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ∃𝑤 ∈ 𝐴 𝑥 ≤s 𝑤) |
| 37 | | vex 3463 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 38 | | breq1 5122 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → (𝑧 ≤s 𝑤 ↔ 𝑥 ≤s 𝑤)) |
| 39 | 38 | rexbidv 3164 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑥 → (∃𝑤 ∈ 𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑥 ≤s 𝑤)) |
| 40 | 37, 39 | ralsn 4657 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
{𝑥}∃𝑤 ∈ 𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤 ∈ 𝐴 𝑥 ≤s 𝑤) |
| 41 | 36, 40 | sylibr 234 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ {𝑥}∃𝑤 ∈ 𝐴 𝑧 ≤s 𝑤) |
| 42 | | ral0 4488 |
. . . . . . . . . . 11
⊢
∀𝑧 ∈
∅ ∃𝑤 ∈
∅ 𝑤 ≤s 𝑧 |
| 43 | 42 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ ∅ ∃𝑤 ∈ ∅ 𝑤 ≤s 𝑧) |
| 44 | | simplrr 777 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝐴 ∈ Fin) |
| 45 | | snex 5406 |
. . . . . . . . . . . 12
⊢ {({𝑥} |s ∅)} ∈
V |
| 46 | 45 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ∈ V) |
| 47 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝐴 ⊆ No
) |
| 48 | 31 | scutcld 27767 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈
No ) |
| 49 | 48 | snssd 4785 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ⊆
No ) |
| 50 | 47 | sselda 3958 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ No
) |
| 51 | 28 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ∈ No
) |
| 52 | 48 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → ({𝑥} |s ∅) ∈
No ) |
| 53 | | breq1 5122 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → (𝑦 ≤s 𝑥 ↔ 𝑧 ≤s 𝑥)) |
| 54 | | simplrr 777 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥) |
| 55 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ∈ 𝐴) |
| 56 | 53, 54, 55 | rspcdva 3602 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑧 ≤s 𝑥) |
| 57 | 51, 34 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑥 ≤s 𝑥) |
| 58 | | breq2 5123 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑥 ≤s 𝑧 ↔ 𝑥 ≤s 𝑥)) |
| 59 | 37, 58 | rexsn 4658 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑧 ∈
{𝑥}𝑥 ≤s 𝑧 ↔ 𝑥 ≤s 𝑥) |
| 60 | 57, 59 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → ∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧) |
| 61 | 60 | orcd 873 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅))) |
| 62 | | lltropt 27836 |
. . . . . . . . . . . . . . . . 17
⊢ ( L
‘𝑥) <<s ( R
‘𝑥) |
| 63 | 62 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → ( L ‘𝑥) <<s ( R ‘𝑥)) |
| 64 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → {𝑥} <<s ∅) |
| 65 | | lrcut 27867 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈
No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) |
| 66 | 51, 65 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥) |
| 67 | 66 | eqcomd 2741 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥))) |
| 68 | | eqidd 2736 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → ({𝑥} |s ∅) = ({𝑥} |s ∅)) |
| 69 | | sltrec 27784 |
. . . . . . . . . . . . . . . 16
⊢ (((( L
‘𝑥) <<s ( R
‘𝑥) ∧ {𝑥} <<s ∅) ∧
(𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)) ∧ ({𝑥} |s ∅) = ({𝑥} |s ∅))) → (𝑥 <s ({𝑥} |s ∅) ↔ (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅)))) |
| 70 | 63, 64, 67, 68, 69 | syl22anc 838 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → (𝑥 <s ({𝑥} |s ∅) ↔ (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅)))) |
| 71 | 61, 70 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑥 <s ({𝑥} |s ∅)) |
| 72 | 50, 51, 52, 56, 71 | slelttrd 27725 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → 𝑧 <s ({𝑥} |s ∅)) |
| 73 | | velsn 4617 |
. . . . . . . . . . . . . 14
⊢ (𝑤 ∈ {({𝑥} |s ∅)} ↔ 𝑤 = ({𝑥} |s ∅)) |
| 74 | | breq2 5123 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ({𝑥} |s ∅) → (𝑧 <s 𝑤 ↔ 𝑧 <s ({𝑥} |s ∅))) |
| 75 | 73, 74 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ {({𝑥} |s ∅)} → (𝑧 <s 𝑤 ↔ 𝑧 <s ({𝑥} |s ∅))) |
| 76 | 72, 75 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴) → (𝑤 ∈ {({𝑥} |s ∅)} → 𝑧 <s 𝑤)) |
| 77 | 76 | 3impia 1117 |
. . . . . . . . . . 11
⊢ ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧 ∈ 𝐴 ∧ 𝑤 ∈ {({𝑥} |s ∅)}) → 𝑧 <s 𝑤) |
| 78 | 44, 46, 47, 49, 77 | ssltd 27755 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝐴 <<s {({𝑥} |s ∅)}) |
| 79 | | snelpwi 5418 |
. . . . . . . . . . 11
⊢ (({𝑥} |s ∅) ∈ No → {({𝑥} |s ∅)} ∈ 𝒫 No ) |
| 80 | | nulssgt 27762 |
. . . . . . . . . . 11
⊢ ({({𝑥} |s ∅)} ∈ 𝒫
No → {({𝑥} |s ∅)} <<s
∅) |
| 81 | 48, 79, 80 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} <<s
∅) |
| 82 | 31, 41, 43, 78, 81 | cofcut1d 27881 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝐴 |s ∅)) |
| 83 | 82 | eqcomd 2741 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) = ({𝑥} |s ∅)) |
| 84 | | simplrl 776 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝐴 ⊆
ℕ0s) |
| 85 | 84, 33 | sseldd 3959 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → 𝑥 ∈
ℕ0s) |
| 86 | | peano2n0s 28275 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℕ0s
→ (𝑥 +s
1s ) ∈ ℕ0s) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) ∈
ℕ0s) |
| 88 | | n0scut 28278 |
. . . . . . . . . . 11
⊢ ((𝑥 +s 1s )
∈ ℕ0s → (𝑥 +s 1s ) = ({((𝑥 +s 1s )
-s 1s )} |s ∅)) |
| 89 | 87, 88 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s )
-s 1s )} |s ∅)) |
| 90 | | 1sno 27791 |
. . . . . . . . . . . . 13
⊢
1s ∈ No |
| 91 | | pncans 28028 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈
No ∧ 1s ∈ No ) →
((𝑥 +s
1s ) -s 1s ) = 𝑥) |
| 92 | 28, 90, 91 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ((𝑥 +s 1s ) -s
1s ) = 𝑥) |
| 93 | 92 | sneqd 4613 |
. . . . . . . . . . 11
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → {((𝑥 +s 1s ) -s
1s )} = {𝑥}) |
| 94 | 93 | oveq1d 7420 |
. . . . . . . . . 10
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ({((𝑥 +s 1s ) -s
1s )} |s ∅) = ({𝑥} |s ∅)) |
| 95 | 89, 94 | eqtr2d 2771 |
. . . . . . . . 9
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝑥 +s 1s
)) |
| 96 | 95, 87 | eqeltrd 2834 |
. . . . . . . 8
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈
ℕ0s) |
| 97 | 83, 96 | eqeltrd 2834 |
. . . . . . 7
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
(𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) ∈
ℕ0s) |
| 98 | 97 | expr 456 |
. . . . . 6
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 𝑦 ≤s 𝑥 → (𝐴 |s ∅) ∈
ℕ0s)) |
| 99 | 25, 98 | sylbird 260 |
. . . . 5
⊢ (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) ∧
𝑥 ∈ 𝐴) → (∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈
ℕ0s)) |
| 100 | 99 | rexlimdva 3141 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈
ℕ0s)) |
| 101 | 17, 100 | mpd 15 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin)) →
(𝐴 |s ∅) ∈
ℕ0s) |
| 102 | 101 | ex 412 |
. 2
⊢ (𝐴 ≠ ∅ → ((𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin) →
(𝐴 |s ∅) ∈
ℕ0s)) |
| 103 | 6, 102 | pm2.61ine 3015 |
1
⊢ ((𝐴 ⊆ ℕ0s
∧ 𝐴 ∈ Fin) →
(𝐴 |s ∅) ∈
ℕ0s) |