MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sfincut Structured version   Visualization version   GIF version

Theorem n0sfincut 28298
Description: The simplest number greater than a finite set of non-negative surreal integers is a non-negative surreal integer. (Contributed by Scott Fenton, 5-Nov-2025.)
Assertion
Ref Expression
n0sfincut ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s)

Proof of Theorem n0sfincut
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7412 . . . 4 (𝐴 = ∅ → (𝐴 |s ∅) = (∅ |s ∅))
2 df-0s 27788 . . . . 5 0s = (∅ |s ∅)
3 0n0s 28274 . . . . 5 0s ∈ ℕ0s
42, 3eqeltrri 2831 . . . 4 (∅ |s ∅) ∈ ℕ0s
51, 4eqeltrdi 2842 . . 3 (𝐴 = ∅ → (𝐴 |s ∅) ∈ ℕ0s)
65a1d 25 . 2 (𝐴 = ∅ → ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s))
7 n0ssno 28265 . . . . . . . 8 0s No
8 sstr 3967 . . . . . . . 8 ((𝐴 ⊆ ℕ0s ∧ ℕ0s No ) → 𝐴 No )
97, 8mpan2 691 . . . . . . 7 (𝐴 ⊆ ℕ0s𝐴 No )
10 sltso 27640 . . . . . . 7 <s Or No
11 soss 5581 . . . . . . 7 (𝐴 No → ( <s Or No → <s Or 𝐴))
129, 10, 11mpisyl 21 . . . . . 6 (𝐴 ⊆ ℕ0s → <s Or 𝐴)
1312ad2antrl 728 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → <s Or 𝐴)
14 simprr 772 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
15 simpl 482 . . . . 5 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 ≠ ∅)
16 fimax2g 9294 . . . . 5 (( <s Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
1713, 14, 15, 16syl3anc 1373 . . . 4 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦)
189ad2antrl 728 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → 𝐴 No )
1918adantr 480 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → 𝐴 No )
2019sselda 3958 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑦 No )
2118sselda 3958 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → 𝑥 No )
2221adantr 480 . . . . . . . 8 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → 𝑥 No )
23 slenlt 27716 . . . . . . . 8 ((𝑦 No 𝑥 No ) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦))
2420, 22, 23syl2anc 584 . . . . . . 7 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) ∧ 𝑦𝐴) → (𝑦 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑦))
2524ralbidva 3161 . . . . . 6 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦 ≤s 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥 <s 𝑦))
26 simpl 482 . . . . . . . . . . . 12 ((𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥) → 𝑥𝐴)
27 ssel2 3953 . . . . . . . . . . . 12 ((𝐴 No 𝑥𝐴) → 𝑥 No )
2818, 26, 27syl2an 596 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 No )
29 snelpwi 5418 . . . . . . . . . . 11 (𝑥 No → {𝑥} ∈ 𝒫 No )
30 nulssgt 27762 . . . . . . . . . . 11 ({𝑥} ∈ 𝒫 No → {𝑥} <<s ∅)
3128, 29, 303syl 18 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {𝑥} <<s ∅)
32 breq2 5123 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑥 ≤s 𝑤𝑥 ≤s 𝑥))
33 simprl 770 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥𝐴)
34 slerflex 27727 . . . . . . . . . . . . 13 (𝑥 No 𝑥 ≤s 𝑥)
3528, 34syl 17 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 ≤s 𝑥)
3632, 33, 35rspcedvdw 3604 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∃𝑤𝐴 𝑥 ≤s 𝑤)
37 vex 3463 . . . . . . . . . . . 12 𝑥 ∈ V
38 breq1 5122 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝑧 ≤s 𝑤𝑥 ≤s 𝑤))
3938rexbidv 3164 . . . . . . . . . . . 12 (𝑧 = 𝑥 → (∃𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤𝐴 𝑥 ≤s 𝑤))
4037, 39ralsn 4657 . . . . . . . . . . 11 (∀𝑧 ∈ {𝑥}∃𝑤𝐴 𝑧 ≤s 𝑤 ↔ ∃𝑤𝐴 𝑥 ≤s 𝑤)
4136, 40sylibr 234 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ {𝑥}∃𝑤𝐴 𝑧 ≤s 𝑤)
42 ral0 4488 . . . . . . . . . . 11 𝑧 ∈ ∅ ∃𝑤 ∈ ∅ 𝑤 ≤s 𝑧
4342a1i 11 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ∀𝑧 ∈ ∅ ∃𝑤 ∈ ∅ 𝑤 ≤s 𝑧)
44 simplrr 777 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 ∈ Fin)
45 snex 5406 . . . . . . . . . . . 12 {({𝑥} |s ∅)} ∈ V
4645a1i 11 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ∈ V)
4718adantr 480 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 No )
4831scutcld 27767 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈ No )
4948snssd 4785 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} ⊆ No )
5047sselda 3958 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 No )
5128adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 No )
5248adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ({𝑥} |s ∅) ∈ No )
53 breq1 5122 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤s 𝑥𝑧 ≤s 𝑥))
54 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ∀𝑦𝐴 𝑦 ≤s 𝑥)
55 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧𝐴)
5653, 54, 55rspcdva 3602 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 ≤s 𝑥)
5751, 34syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 ≤s 𝑥)
58 breq2 5123 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑥 → (𝑥 ≤s 𝑧𝑥 ≤s 𝑥))
5937, 58rexsn 4658 . . . . . . . . . . . . . . . . 17 (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧𝑥 ≤s 𝑥)
6057, 59sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧)
6160orcd 873 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅)))
62 lltropt 27836 . . . . . . . . . . . . . . . . 17 ( L ‘𝑥) <<s ( R ‘𝑥)
6362a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ( L ‘𝑥) <<s ( R ‘𝑥))
6431adantr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → {𝑥} <<s ∅)
65 lrcut 27867 . . . . . . . . . . . . . . . . . 18 (𝑥 No → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
6651, 65syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (( L ‘𝑥) |s ( R ‘𝑥)) = 𝑥)
6766eqcomd 2741 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)))
68 eqidd 2736 . . . . . . . . . . . . . . . 16 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → ({𝑥} |s ∅) = ({𝑥} |s ∅))
69 sltrec 27784 . . . . . . . . . . . . . . . 16 (((( L ‘𝑥) <<s ( R ‘𝑥) ∧ {𝑥} <<s ∅) ∧ (𝑥 = (( L ‘𝑥) |s ( R ‘𝑥)) ∧ ({𝑥} |s ∅) = ({𝑥} |s ∅))) → (𝑥 <s ({𝑥} |s ∅) ↔ (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅))))
7063, 64, 67, 68, 69syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (𝑥 <s ({𝑥} |s ∅) ↔ (∃𝑧 ∈ {𝑥}𝑥 ≤s 𝑧 ∨ ∃𝑤 ∈ ( R ‘𝑥)𝑤 ≤s ({𝑥} |s ∅))))
7161, 70mpbird 257 . . . . . . . . . . . . . 14 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑥 <s ({𝑥} |s ∅))
7250, 51, 52, 56, 71slelttrd 27725 . . . . . . . . . . . . 13 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → 𝑧 <s ({𝑥} |s ∅))
73 velsn 4617 . . . . . . . . . . . . . 14 (𝑤 ∈ {({𝑥} |s ∅)} ↔ 𝑤 = ({𝑥} |s ∅))
74 breq2 5123 . . . . . . . . . . . . . 14 (𝑤 = ({𝑥} |s ∅) → (𝑧 <s 𝑤𝑧 <s ({𝑥} |s ∅)))
7573, 74sylbi 217 . . . . . . . . . . . . 13 (𝑤 ∈ {({𝑥} |s ∅)} → (𝑧 <s 𝑤𝑧 <s ({𝑥} |s ∅)))
7672, 75syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴) → (𝑤 ∈ {({𝑥} |s ∅)} → 𝑧 <s 𝑤))
77763impia 1117 . . . . . . . . . . 11 ((((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) ∧ 𝑧𝐴𝑤 ∈ {({𝑥} |s ∅)}) → 𝑧 <s 𝑤)
7844, 46, 47, 49, 77ssltd 27755 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 <<s {({𝑥} |s ∅)})
79 snelpwi 5418 . . . . . . . . . . 11 (({𝑥} |s ∅) ∈ No → {({𝑥} |s ∅)} ∈ 𝒫 No )
80 nulssgt 27762 . . . . . . . . . . 11 ({({𝑥} |s ∅)} ∈ 𝒫 No → {({𝑥} |s ∅)} <<s ∅)
8148, 79, 803syl 18 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {({𝑥} |s ∅)} <<s ∅)
8231, 41, 43, 78, 81cofcut1d 27881 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝐴 |s ∅))
8382eqcomd 2741 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) = ({𝑥} |s ∅))
84 simplrl 776 . . . . . . . . . . . . 13 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝐴 ⊆ ℕ0s)
8584, 33sseldd 3959 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → 𝑥 ∈ ℕ0s)
86 peano2n0s 28275 . . . . . . . . . . . 12 (𝑥 ∈ ℕ0s → (𝑥 +s 1s ) ∈ ℕ0s)
8785, 86syl 17 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) ∈ ℕ0s)
88 n0scut 28278 . . . . . . . . . . 11 ((𝑥 +s 1s ) ∈ ℕ0s → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
8987, 88syl 17 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝑥 +s 1s ) = ({((𝑥 +s 1s ) -s 1s )} |s ∅))
90 1sno 27791 . . . . . . . . . . . . 13 1s No
91 pncans 28028 . . . . . . . . . . . . 13 ((𝑥 No ∧ 1s No ) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9228, 90, 91sylancl 586 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ((𝑥 +s 1s ) -s 1s ) = 𝑥)
9392sneqd 4613 . . . . . . . . . . 11 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → {((𝑥 +s 1s ) -s 1s )} = {𝑥})
9493oveq1d 7420 . . . . . . . . . 10 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({((𝑥 +s 1s ) -s 1s )} |s ∅) = ({𝑥} |s ∅))
9589, 94eqtr2d 2771 . . . . . . . . 9 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) = (𝑥 +s 1s ))
9695, 87eqeltrd 2834 . . . . . . . 8 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → ({𝑥} |s ∅) ∈ ℕ0s)
9783, 96eqeltrd 2834 . . . . . . 7 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ (𝑥𝐴 ∧ ∀𝑦𝐴 𝑦 ≤s 𝑥)) → (𝐴 |s ∅) ∈ ℕ0s)
9897expr 456 . . . . . 6 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 𝑦 ≤s 𝑥 → (𝐴 |s ∅) ∈ ℕ0s))
9925, 98sylbird 260 . . . . 5 (((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) ∧ 𝑥𝐴) → (∀𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈ ℕ0s))
10099rexlimdva 3141 . . . 4 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → (∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦 → (𝐴 |s ∅) ∈ ℕ0s))
10117, 100mpd 15 . . 3 ((𝐴 ≠ ∅ ∧ (𝐴 ⊆ ℕ0s𝐴 ∈ Fin)) → (𝐴 |s ∅) ∈ ℕ0s)
102101ex 412 . 2 (𝐴 ≠ ∅ → ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s))
1036, 102pm2.61ine 3015 1 ((𝐴 ⊆ ℕ0s𝐴 ∈ Fin) → (𝐴 |s ∅) ∈ ℕ0s)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   class class class wbr 5119   Or wor 5560  cfv 6531  (class class class)co 7405  Fincfn 8959   No csur 27603   <s cslt 27604   ≤s csle 27708   <<s csslt 27744   |s cscut 27746   0s c0s 27786   1s c1s 27787   L cleft 27805   R cright 27806   +s cadds 27918   -s csubs 27978  0scnn0s 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-en 8960  df-fin 8963  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-n0s 28260
This theorem is referenced by:  onsfi  28299
  Copyright terms: Public domain W3C validator