Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2lem Structured version   Visualization version   GIF version

Theorem rtelextdg2lem 33760
Description: Lemma for rtelextdg2 33761: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
rtelextdg2lem.1 𝑌 = (var1𝐾)
rtelextdg2lem.2 = (+g𝑃)
rtelextdg2lem.3 = (.r𝑃)
rtelextdg2lem.4 = (.g‘(mulGrp‘𝑃))
rtelextdg2lem.5 𝑈 = (algSc‘𝑃)
rtelextdg2lem.6 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
Assertion
Ref Expression
rtelextdg2lem (𝜑 → (𝐿[:]𝐾) ≤ 2)

Proof of Theorem rtelextdg2lem
Dummy variables 𝑖 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rtelextdg2.1 . . . . 5 𝐾 = (𝐸s 𝐹)
2 rtelextdg2.2 . . . . 5 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
3 eqid 2735 . . . . 5 (deg1𝐸) = (deg1𝐸)
4 eqid 2735 . . . . 5 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
5 rtelextdg2.9 . . . . 5 (𝜑𝐸 ∈ Field)
6 rtelextdg2.10 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 rtelextdg2.11 . . . . . 6 (𝜑𝑋𝑉)
8 fveq2 6876 . . . . . . . . 9 (𝑝 = 𝐺 → ((𝐸 evalSub1 𝐹)‘𝑝) = ((𝐸 evalSub1 𝐹)‘𝐺))
98fveq1d 6878 . . . . . . . 8 (𝑝 = 𝐺 → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋))
109eqeq1d 2737 . . . . . . 7 (𝑝 = 𝐺 → ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 ↔ (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 ))
11 rtelextdg2lem.6 . . . . . . . . 9 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
12 eqid 2735 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
13 rtelextdg2lem.2 . . . . . . . . . 10 = (+g𝑃)
14 fldsdrgfld 20758 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
155, 6, 14syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸s 𝐹) ∈ Field)
1615fldcrngd 20702 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
171, 16eqeltrid 2838 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
1817crngringd 20206 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
19 rtelextdg2.4 . . . . . . . . . . . . 13 𝑃 = (Poly1𝐾)
2019ply1ring 22183 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2118, 20syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20202 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
23 eqid 2735 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2423, 12mgpbas 20105 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
25 rtelextdg2lem.4 . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
2623ringmgp 20199 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
28 2nn0 12518 . . . . . . . . . . . 12 2 ∈ ℕ0
2928a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
30 rtelextdg2lem.1 . . . . . . . . . . . . 13 𝑌 = (var1𝐾)
3130, 19, 12vr1cl 22153 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
3218, 31syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑃))
3324, 25, 27, 29, 32mulgnn0cld 19078 . . . . . . . . . 10 (𝜑 → (2 𝑌) ∈ (Base‘𝑃))
34 rtelextdg2lem.3 . . . . . . . . . . . 12 = (.r𝑃)
35 rtelextdg2lem.5 . . . . . . . . . . . . 13 𝑈 = (algSc‘𝑃)
365fldcrngd 20702 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
37 sdrgsubrg 20751 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubRing‘𝐸))
39 rtelextdg2.12 . . . . . . . . . . . . 13 (𝜑𝐴𝐹)
4019, 1, 35, 12, 36, 38, 39ressasclcl 33584 . . . . . . . . . . . 12 (𝜑 → (𝑈𝐴) ∈ (Base‘𝑃))
4112, 34, 21, 40, 32ringcld 20220 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃))
42 rtelextdg2.13 . . . . . . . . . . . 12 (𝜑𝐵𝐹)
4319, 1, 35, 12, 36, 38, 42ressasclcl 33584 . . . . . . . . . . 11 (𝜑 → (𝑈𝐵) ∈ (Base‘𝑃))
4412, 13, 22, 41, 43grpcld 18930 . . . . . . . . . 10 (𝜑 → (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃))
4512, 13, 22, 33, 44grpcld 18930 . . . . . . . . 9 (𝜑 → ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))) ∈ (Base‘𝑃))
4611, 45eqeltrid 2838 . . . . . . . 8 (𝜑𝐺 ∈ (Base‘𝑃))
4711fveq2i 6879 . . . . . . . . . . . 12 (coe1𝐺) = (coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
4847fveq1i 6877 . . . . . . . . . . 11 ((coe1𝐺)‘2) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2)
49 eqid 2735 . . . . . . . . . . . . . 14 (+g𝐾) = (+g𝐾)
5019, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . 13 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
5118, 33, 44, 29, 50syl31anc 1375 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
52 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝐾) = (0g𝐾)
53 eqid 2735 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
5419, 30, 25, 18, 29, 52, 53coe1mon 33598 . . . . . . . . . . . . . 14 (𝜑 → (coe1‘(2 𝑌)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 2, (1r𝐾), (0g𝐾))))
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 2) → 𝑖 = 2)
5655iftrued 4508 . . . . . . . . . . . . . 14 ((𝜑𝑖 = 2) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (1r𝐾))
57 fvexd 6891 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ V)
5854, 56, 29, 57fvmptd 6993 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(2 𝑌))‘2) = (1r𝐾))
5919, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
6018, 41, 43, 29, 59syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
61 rtelextdg2.5 . . . . . . . . . . . . . . . . . . . 20 𝑉 = (Base‘𝐸)
6261sdrgss 20753 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
631, 61ressbas2 17259 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑉𝐹 = (Base‘𝐾))
646, 62, 633syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (Base‘𝐾))
6539, 64eleqtrd 2836 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (Base‘𝐾))
66 eqid 2735 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
67 eqid 2735 . . . . . . . . . . . . . . . . . 18 (.r𝐾) = (.r𝐾)
6819, 12, 66, 35, 34, 67coe1sclmulfv 22220 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
6918, 65, 32, 29, 68syl121anc 1377 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
7019, 30, 18, 52, 53coe1vr1 33601 . . . . . . . . . . . . . . . . . 18 (𝜑 → (coe1𝑌) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 1, (1r𝐾), (0g𝐾))))
71 1ne2 12448 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 2
7271nesymi 2989 . . . . . . . . . . . . . . . . . . . . 21 ¬ 2 = 1
73 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → (𝑖 = 1 ↔ 2 = 1))
7472, 73mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 1)
7574adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 2) → ¬ 𝑖 = 1)
7675iffalsed 4511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 2) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
77 fvexd 6891 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐾) ∈ V)
7870, 76, 29, 77fvmptd 6993 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1𝑌)‘2) = (0g𝐾))
7978oveq2d 7421 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘2)) = (𝐴(.r𝐾)(0g𝐾)))
8066, 67, 52, 18, 65ringrzd 20256 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)(0g𝐾)) = (0g𝐾))
8169, 79, 803eqtrd 2774 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (0g𝐾))
8242, 64eleqtrd 2836 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (Base‘𝐾))
8319, 35, 66, 52coe1scl 22224 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
8418, 82, 83syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
85 0ne2 12447 . . . . . . . . . . . . . . . . . . . 20 0 ≠ 2
8685neii 2934 . . . . . . . . . . . . . . . . . . 19 ¬ 0 = 2
87 eqeq1 2739 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 0 → (𝑖 = 2 ↔ 0 = 2))
8886, 87mtbiri 327 . . . . . . . . . . . . . . . . . 18 (𝑖 = 0 → ¬ 𝑖 = 2)
8988, 55nsyl3 138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 2) → ¬ 𝑖 = 0)
9089iffalsed 4511 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 2) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
9184, 90, 29, 77fvmptd 6993 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(𝑈𝐵))‘2) = (0g𝐾))
9281, 91oveq12d 7423 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)) = ((0g𝐾)(+g𝐾)(0g𝐾)))
9318ringgrpd 20202 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Grp)
9466, 52grpidcl 18948 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Grp → (0g𝐾) ∈ (Base‘𝐾))
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐾) ∈ (Base‘𝐾))
9666, 49, 52, 93, 95grpridd 18953 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)(0g𝐾)) = (0g𝐾))
9760, 92, 963eqtrd 2774 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (0g𝐾))
9858, 97oveq12d 7423 . . . . . . . . . . . 12 (𝜑 → (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)) = ((1r𝐾)(+g𝐾)(0g𝐾)))
9966, 53ringidcl 20225 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
10018, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
10166, 49, 52, 93, 100grpridd 18953 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐾))
10236crngringd 20206 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
103 eqid 2735 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
104103subrg1cl 20540 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
10538, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝐹)
1066, 62syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹𝑉)
1071, 61, 103ress1r 33229 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝐹𝐹𝑉) → (1r𝐸) = (1r𝐾))
108102, 105, 106, 107syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐾))
109101, 108eqtr4d 2773 . . . . . . . . . . . 12 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐸))
11051, 98, 1093eqtrd 2774 . . . . . . . . . . 11 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (1r𝐸))
11148, 110eqtrid 2782 . . . . . . . . . 10 (𝜑 → ((coe1𝐺)‘2) = (1r𝐸))
1125flddrngd 20701 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
113 drngnzr 20708 . . . . . . . . . . 11 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
114 rtelextdg2.3 . . . . . . . . . . . 12 0 = (0g𝐸)
115103, 114nzrnz 20475 . . . . . . . . . . 11 (𝐸 ∈ NzRing → (1r𝐸) ≠ 0 )
116112, 113, 1153syl 18 . . . . . . . . . 10 (𝜑 → (1r𝐸) ≠ 0 )
117111, 116eqnetrd 2999 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘2) ≠ 0 )
118 fveq2 6876 . . . . . . . . . . 11 (𝐺 = (0g𝑃) → (coe1𝐺) = (coe1‘(0g𝑃)))
119118fveq1d 6878 . . . . . . . . . 10 (𝐺 = (0g𝑃) → ((coe1𝐺)‘2) = ((coe1‘(0g𝑃))‘2))
120 eqid 2735 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
12119, 120, 52, 18, 29coe1zfv 33600 . . . . . . . . . . 11 (𝜑 → ((coe1‘(0g𝑃))‘2) = (0g𝐾))
122102ringgrpd 20202 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Grp)
123122grpmndd 18929 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
124 subrgsubg 20537 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
12538, 124syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubGrp‘𝐸))
126114subg0cl 19117 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 0𝐹)
127125, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐹)
1281, 61, 114ress0g 18740 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ 0𝐹𝐹𝑉) → 0 = (0g𝐾))
129123, 127, 106, 128syl3anc 1373 . . . . . . . . . . 11 (𝜑0 = (0g𝐾))
130121, 129eqtr4d 2773 . . . . . . . . . 10 (𝜑 → ((coe1‘(0g𝑃))‘2) = 0 )
131119, 130sylan9eqr 2792 . . . . . . . . 9 ((𝜑𝐺 = (0g𝑃)) → ((coe1𝐺)‘2) = 0 )
132117, 131mteqand 3023 . . . . . . . 8 (𝜑𝐺 ≠ (0g𝑃))
13311fveq2i 6879 . . . . . . . . . . 11 ((deg1𝐾)‘𝐺) = ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
134 eqid 2735 . . . . . . . . . . . . 13 (deg1𝐾) = (deg1𝐾)
135 2re 12314 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
136135rexri 11293 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ*)
138134, 19, 12deg1xrcl 26039 . . . . . . . . . . . . . . . . 17 (((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
13941, 138syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
140 1xr 11294 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
141140a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ*)
142134, 19, 66, 12, 34, 35deg1mul3le 26074 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
14318, 65, 32, 142syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
1441, 15eqeltrid 2838 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ Field)
145144flddrngd 20701 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ DivRing)
146 drngnzr 20708 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
147145, 146syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ NzRing)
148134, 19, 30, 147deg1vr 33602 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘𝑌) = 1)
149143, 148breqtrd 5145 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ 1)
150 1lt2 12411 . . . . . . . . . . . . . . . . 17 1 < 2
151150a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
152139, 141, 137, 149, 151xrlelttrd 13176 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) < 2)
153134, 19, 12deg1xrcl 26039 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵) ∈ (Base‘𝑃) → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
15443, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
155 0xr 11282 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
156155a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℝ*)
157134, 19, 66, 35deg1sclle 26069 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
15818, 82, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
159 2pos 12343 . . . . . . . . . . . . . . . . 17 0 < 2
160159a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
161154, 156, 137, 158, 160xrlelttrd 13176 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) < 2)
16219, 134, 18, 12, 13, 41, 43, 137, 152, 161deg1addlt 33609 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < 2)
163134, 19, 30, 23, 25deg1pw 26078 . . . . . . . . . . . . . . 15 ((𝐾 ∈ NzRing ∧ 2 ∈ ℕ0) → ((deg1𝐾)‘(2 𝑌)) = 2)
164147, 29, 163syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(2 𝑌)) = 2)
165162, 164breqtrrd 5147 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < ((deg1𝐾)‘(2 𝑌)))
16619, 134, 18, 12, 13, 33, 44, 165deg1add 26060 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = ((deg1𝐾)‘(2 𝑌)))
167166, 164eqtrd 2770 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = 2)
168133, 167eqtrid 2782 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘𝐺) = 2)
169168fveq2d 6880 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = ((coe1𝐺)‘2))
170169, 111, 1083eqtrd 2774 . . . . . . . 8 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾))
171 eqid 2735 . . . . . . . . 9 (Monic1p𝐾) = (Monic1p𝐾)
17219, 12, 120, 134, 171, 53ismon1p 26100 . . . . . . . 8 (𝐺 ∈ (Monic1p𝐾) ↔ (𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾)))
17346, 132, 170, 172syl3anbrc 1344 . . . . . . 7 (𝜑𝐺 ∈ (Monic1p𝐾))
174 eqid 2735 . . . . . . . . . . . 12 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
175 eqid 2735 . . . . . . . . . . . 12 (eval1𝐸) = (eval1𝐸)
176174, 61, 19, 1, 12, 175, 36, 38ressply1evl 22308 . . . . . . . . . . 11 (𝜑 → (𝐸 evalSub1 𝐹) = ((eval1𝐸) ↾ (Base‘𝑃)))
177176fveq1d 6878 . . . . . . . . . 10 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺))
17846fvresd 6896 . . . . . . . . . 10 (𝜑 → (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺) = ((eval1𝐸)‘𝐺))
179177, 178eqtrd 2770 . . . . . . . . 9 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = ((eval1𝐸)‘𝐺))
180179fveq1d 6878 . . . . . . . 8 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = (((eval1𝐸)‘𝐺)‘𝑋))
181 eqid 2735 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
182 eqid 2735 . . . . . . . . 9 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
183 rtelextdg2.6 . . . . . . . . 9 · = (.r𝐸)
184 rtelextdg2.7 . . . . . . . . 9 + = (+g𝐸)
185 rtelextdg2.8 . . . . . . . . 9 = (.g‘(mulGrp‘𝐸))
186 eqid 2735 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
187 eqid 2735 . . . . . . . . 9 ((coe1𝐺)‘2) = ((coe1𝐺)‘2)
188 eqid 2735 . . . . . . . . 9 ((coe1𝐺)‘1) = ((coe1𝐺)‘1)
189 eqid 2735 . . . . . . . . 9 ((coe1𝐺)‘0) = ((coe1𝐺)‘0)
190 eqid 2735 . . . . . . . . . . . 12 (PwSer1𝐾) = (PwSer1𝐾)
191 eqid 2735 . . . . . . . . . . . 12 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
192181, 1, 19, 12, 38, 190, 191, 182ressply1bas2 22163 . . . . . . . . . . 11 (𝜑 → (Base‘𝑃) = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
19346, 192eleqtrd 2836 . . . . . . . . . 10 (𝜑𝐺 ∈ ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
194193elin2d 4180 . . . . . . . . 9 (𝜑𝐺 ∈ (Base‘(Poly1𝐸)))
1951, 3, 19, 12, 46, 38ressdeg1 33579 . . . . . . . . . 10 (𝜑 → ((deg1𝐸)‘𝐺) = ((deg1𝐾)‘𝐺))
196195, 168eqtrd 2770 . . . . . . . . 9 (𝜑 → ((deg1𝐸)‘𝐺) = 2)
197181, 175, 61, 182, 183, 184, 185, 186, 3, 187, 188, 189, 36, 194, 196, 7evl1deg2 33590 . . . . . . . 8 (𝜑 → (((eval1𝐸)‘𝐺)‘𝑋) = ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))))
198111oveq1d 7420 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = ((1r𝐸) · (2 𝑋)))
199 eqid 2735 . . . . . . . . . . . . . 14 (mulGrp‘𝐸) = (mulGrp‘𝐸)
200199, 61mgpbas 20105 . . . . . . . . . . . . 13 𝑉 = (Base‘(mulGrp‘𝐸))
201199ringmgp 20199 . . . . . . . . . . . . . 14 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
202102, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
203200, 185, 202, 29, 7mulgnn0cld 19078 . . . . . . . . . . . 12 (𝜑 → (2 𝑋) ∈ 𝑉)
20461, 183, 103, 102, 203ringlidmd 20232 . . . . . . . . . . 11 (𝜑 → ((1r𝐸) · (2 𝑋)) = (2 𝑋))
205198, 204eqtrd 2770 . . . . . . . . . 10 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = (2 𝑋))
20647fveq1i 6877 . . . . . . . . . . . . 13 ((coe1𝐺)‘1) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1)
207 1nn0 12517 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
20919, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21018, 33, 44, 208, 209syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21171neii 2934 . . . . . . . . . . . . . . . . . 18 ¬ 1 = 2
212 eqeq1 2739 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → (𝑖 = 2 ↔ 1 = 2))
213212notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 1 → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
214213adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
215211, 214mpbiri 258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 1) → ¬ 𝑖 = 2)
216215iffalsed 4511 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 1) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
21754, 216, 208, 77fvmptd 6993 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(2 𝑌))‘1) = (0g𝐾))
21819, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
21918, 41, 43, 208, 218syl31anc 1375 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
22019, 12, 66, 35, 34, 67coe1sclmulfv 22220 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
22118, 65, 32, 208, 220syl121anc 1377 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
222 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 = 1) → 𝑖 = 1)
223222iftrued 4508 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 1) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (1r𝐾))
22470, 223, 208, 57fvmptd 6993 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((coe1𝑌)‘1) = (1r𝐾))
225224oveq2d 7421 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘1)) = (𝐴(.r𝐾)(1r𝐾)))
22666, 67, 53, 18, 65ringridmd 20233 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)(1r𝐾)) = 𝐴)
227221, 225, 2263eqtrd 2774 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = 𝐴)
228 0ne1 12311 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 1
229228nesymi 2989 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
230 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → (𝑖 = 0 ↔ 1 = 0))
231229, 230mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
232231adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 1) → ¬ 𝑖 = 0)
233232iffalsed 4511 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
23484, 233, 208, 77fvmptd 6993 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘(𝑈𝐵))‘1) = (0g𝐾))
235227, 234oveq12d 7423 . . . . . . . . . . . . . . . 16 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)) = (𝐴(+g𝐾)(0g𝐾)))
23666, 49, 52, 93, 65grpridd 18953 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(+g𝐾)(0g𝐾)) = 𝐴)
237219, 235, 2363eqtrd 2774 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = 𝐴)
238217, 237oveq12d 7423 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)) = ((0g𝐾)(+g𝐾)𝐴))
23966, 49, 52, 93, 65grplidd 18952 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)𝐴) = 𝐴)
240210, 238, 2393eqtrd 2774 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = 𝐴)
241206, 240eqtrid 2782 . . . . . . . . . . . 12 (𝜑 → ((coe1𝐺)‘1) = 𝐴)
242241oveq1d 7420 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘1) · 𝑋) = (𝐴 · 𝑋))
24347fveq1i 6877 . . . . . . . . . . . 12 ((coe1𝐺)‘0) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0)
244 0nn0 12516 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
245244a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
24619, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . . 14 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24718, 33, 44, 245, 246syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24888adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → ¬ 𝑖 = 2)
249248iffalsed 4511 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
25054, 249, 245, 77fvmptd 6993 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(2 𝑌))‘0) = (0g𝐾))
25119, 12, 13, 49coe1addfv 22202 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25218, 41, 43, 245, 251syl31anc 1375 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25319, 12, 66, 35, 34, 67coe1sclmulfv 22220 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
25418, 65, 32, 245, 253syl121anc 1377 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
255228neii 2934 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 0 = 1
256 eqeq1 2739 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
257255, 256mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → ¬ 𝑖 = 1)
258257adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 0) → ¬ 𝑖 = 1)
259258iffalsed 4511 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 0) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
26070, 259, 245, 77fvmptd 6993 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1𝑌)‘0) = (0g𝐾))
261260oveq2d 7421 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘0)) = (𝐴(.r𝐾)(0g𝐾)))
262254, 261, 803eqtrd 2774 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (0g𝐾))
26319, 35, 66ply1sclid 22225 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → 𝐵 = ((coe1‘(𝑈𝐵))‘0))
26418, 82, 263syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = ((coe1‘(𝑈𝐵))‘0))
265264eqcomd 2741 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(𝑈𝐵))‘0) = 𝐵)
266262, 265oveq12d 7423 . . . . . . . . . . . . . . 15 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
26766, 49, 52, 93, 82grplidd 18952 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝐾)(+g𝐾)𝐵) = 𝐵)
268252, 266, 2673eqtrd 2774 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = 𝐵)
269250, 268oveq12d 7423 . . . . . . . . . . . . 13 (𝜑 → (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
270247, 269, 2673eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = 𝐵)
271243, 270eqtrid 2782 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘0) = 𝐵)
272242, 271oveq12d 7423 . . . . . . . . . 10 (𝜑 → ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0)) = ((𝐴 · 𝑋) + 𝐵))
273205, 272oveq12d 7423 . . . . . . . . 9 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)))
274 rtelextdg2.14 . . . . . . . . 9 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
275273, 274eqtrd 2770 . . . . . . . 8 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = 0 )
276180, 197, 2753eqtrd 2774 . . . . . . 7 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 )
27710, 173, 276rspcedvdw 3604 . . . . . 6 (𝜑 → ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )
278174, 1, 61, 114, 36, 38elirng 33727 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝑉 ∧ ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )))
2797, 277, 278mpbir2and 713 . . . . 5 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
2801, 2, 3, 4, 5, 6, 279algextdeg 33759 . . . 4 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)))
2811fveq2i 6879 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
28219, 281eqtri 2758 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
283 eqid 2735 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 } = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 }
284 eqid 2735 . . . . . 6 (RSpan‘𝑃) = (RSpan‘𝑃)
285 eqid 2735 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
286174, 282, 61, 5, 6, 7, 114, 283, 284, 285, 4minplycl 33740 . . . . 5 (𝜑 → ((𝐸 minPoly 𝐹)‘𝑋) ∈ (Base‘𝑃))
2871, 3, 19, 12, 286, 38ressdeg1 33579 . . . 4 (𝜑 → ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
288280, 287eqtrd 2770 . . 3 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
2891fveq2i 6879 . . . 4 (deg1𝐾) = (deg1‘(𝐸s 𝐹))
290174, 282, 61, 5, 6, 7, 114, 4, 289, 120, 12, 276, 46, 132minplymindeg 33742 . . 3 (𝜑 → ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)) ≤ ((deg1𝐾)‘𝐺))
291288, 290eqbrtrd 5141 . 2 (𝜑 → (𝐿[:]𝐾) ≤ ((deg1𝐾)‘𝐺))
292291, 168breqtrd 5145 1 (𝜑 → (𝐿[:]𝐾) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  {crab 3415  Vcvv 3459  cun 3924  cin 3925  wss 3926  ifcif 4500  {csn 4601   class class class wbr 5119  cmpt 5201  dom cdm 5654  cres 5656  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  *cxr 11268   < clt 11269  cle 11270  2c2 12295  0cn0 12501  Basecbs 17228  s cress 17251  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Mndcmnd 18712  Grpcgrp 18916  .gcmg 19050  SubGrpcsubg 19103  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194  NzRingcnzr 20472  SubRingcsubrg 20529  DivRingcdr 20689  Fieldcfield 20690  SubDRingcsdrg 20746  RSpancrsp 21168  algSccascl 21812  PwSer1cps1 22110  var1cv1 22111  Poly1cpl1 22112  coe1cco1 22113   evalSub1 ces1 22251  eval1ce1 22252  deg1cdg1 26011  Monic1pcmn1 26083  idlGen1pcig1p 26087   fldGen cfldgen 33304  [:]cextdg 33681   IntgRing cirng 33724   minPoly cminply 33733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-ico 13368  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ocomp 17292  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-mri 17600  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-irred 20319  df-invr 20348  df-dvr 20361  df-rhm 20432  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-idom 20656  df-drng 20691  df-field 20692  df-sdrg 20747  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lmic 20982  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-2idl 21211  df-lpidl 21283  df-lpir 21284  df-pid 21298  df-cnfld 21316  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-evl 22033  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-evls1 22253  df-evl1 22254  df-mdeg 26012  df-deg1 26013  df-mon1 26088  df-uc1p 26089  df-q1p 26090  df-r1p 26091  df-ig1p 26092  df-fldgen 33305  df-mxidl 33475  df-dim 33639  df-fldext 33682  df-extdg 33683  df-irng 33725  df-minply 33734
This theorem is referenced by:  rtelextdg2  33761
  Copyright terms: Public domain W3C validator