Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2lem Structured version   Visualization version   GIF version

Theorem rtelextdg2lem 33712
Description: Lemma for rtelextdg2 33713: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
rtelextdg2lem.1 𝑌 = (var1𝐾)
rtelextdg2lem.2 = (+g𝑃)
rtelextdg2lem.3 = (.r𝑃)
rtelextdg2lem.4 = (.g‘(mulGrp‘𝑃))
rtelextdg2lem.5 𝑈 = (algSc‘𝑃)
rtelextdg2lem.6 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
Assertion
Ref Expression
rtelextdg2lem (𝜑 → (𝐿[:]𝐾) ≤ 2)

Proof of Theorem rtelextdg2lem
Dummy variables 𝑖 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rtelextdg2.1 . . . . 5 𝐾 = (𝐸s 𝐹)
2 rtelextdg2.2 . . . . 5 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
3 eqid 2729 . . . . 5 (deg1𝐸) = (deg1𝐸)
4 eqid 2729 . . . . 5 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
5 rtelextdg2.9 . . . . 5 (𝜑𝐸 ∈ Field)
6 rtelextdg2.10 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 rtelextdg2.11 . . . . . 6 (𝜑𝑋𝑉)
8 fveq2 6826 . . . . . . . . 9 (𝑝 = 𝐺 → ((𝐸 evalSub1 𝐹)‘𝑝) = ((𝐸 evalSub1 𝐹)‘𝐺))
98fveq1d 6828 . . . . . . . 8 (𝑝 = 𝐺 → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋))
109eqeq1d 2731 . . . . . . 7 (𝑝 = 𝐺 → ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 ↔ (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 ))
11 rtelextdg2lem.6 . . . . . . . . 9 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
13 rtelextdg2lem.2 . . . . . . . . . 10 = (+g𝑃)
14 fldsdrgfld 20702 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
155, 6, 14syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸s 𝐹) ∈ Field)
1615fldcrngd 20646 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
171, 16eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
1817crngringd 20150 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
19 rtelextdg2.4 . . . . . . . . . . . . 13 𝑃 = (Poly1𝐾)
2019ply1ring 22149 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2118, 20syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20146 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
23 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2423, 12mgpbas 20049 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
25 rtelextdg2lem.4 . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
2623ringmgp 20143 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
28 2nn0 12420 . . . . . . . . . . . 12 2 ∈ ℕ0
2928a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
30 rtelextdg2lem.1 . . . . . . . . . . . . 13 𝑌 = (var1𝐾)
3130, 19, 12vr1cl 22119 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
3218, 31syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑃))
3324, 25, 27, 29, 32mulgnn0cld 18993 . . . . . . . . . 10 (𝜑 → (2 𝑌) ∈ (Base‘𝑃))
34 rtelextdg2lem.3 . . . . . . . . . . . 12 = (.r𝑃)
35 rtelextdg2lem.5 . . . . . . . . . . . . 13 𝑈 = (algSc‘𝑃)
365fldcrngd 20646 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
37 sdrgsubrg 20695 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubRing‘𝐸))
39 rtelextdg2.12 . . . . . . . . . . . . 13 (𝜑𝐴𝐹)
4019, 1, 35, 12, 36, 38, 39ressasclcl 33525 . . . . . . . . . . . 12 (𝜑 → (𝑈𝐴) ∈ (Base‘𝑃))
4112, 34, 21, 40, 32ringcld 20164 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃))
42 rtelextdg2.13 . . . . . . . . . . . 12 (𝜑𝐵𝐹)
4319, 1, 35, 12, 36, 38, 42ressasclcl 33525 . . . . . . . . . . 11 (𝜑 → (𝑈𝐵) ∈ (Base‘𝑃))
4412, 13, 22, 41, 43grpcld 18845 . . . . . . . . . 10 (𝜑 → (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃))
4512, 13, 22, 33, 44grpcld 18845 . . . . . . . . 9 (𝜑 → ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))) ∈ (Base‘𝑃))
4611, 45eqeltrid 2832 . . . . . . . 8 (𝜑𝐺 ∈ (Base‘𝑃))
4711fveq2i 6829 . . . . . . . . . . . 12 (coe1𝐺) = (coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
4847fveq1i 6827 . . . . . . . . . . 11 ((coe1𝐺)‘2) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2)
49 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐾) = (+g𝐾)
5019, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . 13 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
5118, 33, 44, 29, 50syl31anc 1375 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
52 eqid 2729 . . . . . . . . . . . . . . 15 (0g𝐾) = (0g𝐾)
53 eqid 2729 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
5419, 30, 25, 18, 29, 52, 53coe1mon 33540 . . . . . . . . . . . . . 14 (𝜑 → (coe1‘(2 𝑌)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 2, (1r𝐾), (0g𝐾))))
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 2) → 𝑖 = 2)
5655iftrued 4486 . . . . . . . . . . . . . 14 ((𝜑𝑖 = 2) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (1r𝐾))
57 fvexd 6841 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ V)
5854, 56, 29, 57fvmptd 6941 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(2 𝑌))‘2) = (1r𝐾))
5919, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
6018, 41, 43, 29, 59syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
61 rtelextdg2.5 . . . . . . . . . . . . . . . . . . . 20 𝑉 = (Base‘𝐸)
6261sdrgss 20697 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
631, 61ressbas2 17168 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑉𝐹 = (Base‘𝐾))
646, 62, 633syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (Base‘𝐾))
6539, 64eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (Base‘𝐾))
66 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
67 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐾) = (.r𝐾)
6819, 12, 66, 35, 34, 67coe1sclmulfv 22186 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
6918, 65, 32, 29, 68syl121anc 1377 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
7019, 30, 18, 52, 53coe1vr1 33543 . . . . . . . . . . . . . . . . . 18 (𝜑 → (coe1𝑌) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 1, (1r𝐾), (0g𝐾))))
71 1ne2 12350 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 2
7271nesymi 2982 . . . . . . . . . . . . . . . . . . . . 21 ¬ 2 = 1
73 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → (𝑖 = 1 ↔ 2 = 1))
7472, 73mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 1)
7574adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 2) → ¬ 𝑖 = 1)
7675iffalsed 4489 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 2) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
77 fvexd 6841 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐾) ∈ V)
7870, 76, 29, 77fvmptd 6941 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1𝑌)‘2) = (0g𝐾))
7978oveq2d 7369 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘2)) = (𝐴(.r𝐾)(0g𝐾)))
8066, 67, 52, 18, 65ringrzd 20200 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)(0g𝐾)) = (0g𝐾))
8169, 79, 803eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (0g𝐾))
8242, 64eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (Base‘𝐾))
8319, 35, 66, 52coe1scl 22190 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
8418, 82, 83syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
85 0ne2 12349 . . . . . . . . . . . . . . . . . . . 20 0 ≠ 2
8685neii 2927 . . . . . . . . . . . . . . . . . . 19 ¬ 0 = 2
87 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 0 → (𝑖 = 2 ↔ 0 = 2))
8886, 87mtbiri 327 . . . . . . . . . . . . . . . . . 18 (𝑖 = 0 → ¬ 𝑖 = 2)
8988, 55nsyl3 138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 2) → ¬ 𝑖 = 0)
9089iffalsed 4489 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 2) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
9184, 90, 29, 77fvmptd 6941 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(𝑈𝐵))‘2) = (0g𝐾))
9281, 91oveq12d 7371 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)) = ((0g𝐾)(+g𝐾)(0g𝐾)))
9318ringgrpd 20146 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Grp)
9466, 52grpidcl 18863 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Grp → (0g𝐾) ∈ (Base‘𝐾))
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐾) ∈ (Base‘𝐾))
9666, 49, 52, 93, 95grpridd 18868 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)(0g𝐾)) = (0g𝐾))
9760, 92, 963eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (0g𝐾))
9858, 97oveq12d 7371 . . . . . . . . . . . 12 (𝜑 → (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)) = ((1r𝐾)(+g𝐾)(0g𝐾)))
9966, 53ringidcl 20169 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
10018, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
10166, 49, 52, 93, 100grpridd 18868 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐾))
10236crngringd 20150 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
103 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
104103subrg1cl 20484 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
10538, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝐹)
1066, 62syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹𝑉)
1071, 61, 103ress1r 33193 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝐹𝐹𝑉) → (1r𝐸) = (1r𝐾))
108102, 105, 106, 107syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐾))
109101, 108eqtr4d 2767 . . . . . . . . . . . 12 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐸))
11051, 98, 1093eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (1r𝐸))
11148, 110eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((coe1𝐺)‘2) = (1r𝐸))
1125flddrngd 20645 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
113 drngnzr 20652 . . . . . . . . . . 11 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
114 rtelextdg2.3 . . . . . . . . . . . 12 0 = (0g𝐸)
115103, 114nzrnz 20419 . . . . . . . . . . 11 (𝐸 ∈ NzRing → (1r𝐸) ≠ 0 )
116112, 113, 1153syl 18 . . . . . . . . . 10 (𝜑 → (1r𝐸) ≠ 0 )
117111, 116eqnetrd 2992 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘2) ≠ 0 )
118 fveq2 6826 . . . . . . . . . . 11 (𝐺 = (0g𝑃) → (coe1𝐺) = (coe1‘(0g𝑃)))
119118fveq1d 6828 . . . . . . . . . 10 (𝐺 = (0g𝑃) → ((coe1𝐺)‘2) = ((coe1‘(0g𝑃))‘2))
120 eqid 2729 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
12119, 120, 52, 18, 29coe1zfv 33542 . . . . . . . . . . 11 (𝜑 → ((coe1‘(0g𝑃))‘2) = (0g𝐾))
122102ringgrpd 20146 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Grp)
123122grpmndd 18844 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
124 subrgsubg 20481 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
12538, 124syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubGrp‘𝐸))
126114subg0cl 19032 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 0𝐹)
127125, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐹)
1281, 61, 114ress0g 18655 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ 0𝐹𝐹𝑉) → 0 = (0g𝐾))
129123, 127, 106, 128syl3anc 1373 . . . . . . . . . . 11 (𝜑0 = (0g𝐾))
130121, 129eqtr4d 2767 . . . . . . . . . 10 (𝜑 → ((coe1‘(0g𝑃))‘2) = 0 )
131119, 130sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝐺 = (0g𝑃)) → ((coe1𝐺)‘2) = 0 )
132117, 131mteqand 3016 . . . . . . . 8 (𝜑𝐺 ≠ (0g𝑃))
13311fveq2i 6829 . . . . . . . . . . 11 ((deg1𝐾)‘𝐺) = ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
134 eqid 2729 . . . . . . . . . . . . 13 (deg1𝐾) = (deg1𝐾)
135 2re 12221 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
136135rexri 11192 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ*)
138134, 19, 12deg1xrcl 26004 . . . . . . . . . . . . . . . . 17 (((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
13941, 138syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
140 1xr 11193 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
141140a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ*)
142134, 19, 66, 12, 34, 35deg1mul3le 26039 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
14318, 65, 32, 142syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
1441, 15eqeltrid 2832 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ Field)
145144flddrngd 20645 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ DivRing)
146 drngnzr 20652 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
147145, 146syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ NzRing)
148134, 19, 30, 147deg1vr 33544 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘𝑌) = 1)
149143, 148breqtrd 5121 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ 1)
150 1lt2 12313 . . . . . . . . . . . . . . . . 17 1 < 2
151150a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
152139, 141, 137, 149, 151xrlelttrd 13081 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) < 2)
153134, 19, 12deg1xrcl 26004 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵) ∈ (Base‘𝑃) → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
15443, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
155 0xr 11181 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
156155a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℝ*)
157134, 19, 66, 35deg1sclle 26034 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
15818, 82, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
159 2pos 12250 . . . . . . . . . . . . . . . . 17 0 < 2
160159a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
161154, 156, 137, 158, 160xrlelttrd 13081 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) < 2)
16219, 134, 18, 12, 13, 41, 43, 137, 152, 161deg1addlt 33551 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < 2)
163134, 19, 30, 23, 25deg1pw 26043 . . . . . . . . . . . . . . 15 ((𝐾 ∈ NzRing ∧ 2 ∈ ℕ0) → ((deg1𝐾)‘(2 𝑌)) = 2)
164147, 29, 163syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(2 𝑌)) = 2)
165162, 164breqtrrd 5123 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < ((deg1𝐾)‘(2 𝑌)))
16619, 134, 18, 12, 13, 33, 44, 165deg1add 26025 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = ((deg1𝐾)‘(2 𝑌)))
167166, 164eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = 2)
168133, 167eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘𝐺) = 2)
169168fveq2d 6830 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = ((coe1𝐺)‘2))
170169, 111, 1083eqtrd 2768 . . . . . . . 8 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾))
171 eqid 2729 . . . . . . . . 9 (Monic1p𝐾) = (Monic1p𝐾)
17219, 12, 120, 134, 171, 53ismon1p 26065 . . . . . . . 8 (𝐺 ∈ (Monic1p𝐾) ↔ (𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾)))
17346, 132, 170, 172syl3anbrc 1344 . . . . . . 7 (𝜑𝐺 ∈ (Monic1p𝐾))
174 eqid 2729 . . . . . . . . . . . 12 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
175 eqid 2729 . . . . . . . . . . . 12 (eval1𝐸) = (eval1𝐸)
176174, 61, 19, 1, 12, 175, 36, 38ressply1evl 22274 . . . . . . . . . . 11 (𝜑 → (𝐸 evalSub1 𝐹) = ((eval1𝐸) ↾ (Base‘𝑃)))
177176fveq1d 6828 . . . . . . . . . 10 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺))
17846fvresd 6846 . . . . . . . . . 10 (𝜑 → (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺) = ((eval1𝐸)‘𝐺))
179177, 178eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = ((eval1𝐸)‘𝐺))
180179fveq1d 6828 . . . . . . . 8 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = (((eval1𝐸)‘𝐺)‘𝑋))
181 eqid 2729 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
182 eqid 2729 . . . . . . . . 9 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
183 rtelextdg2.6 . . . . . . . . 9 · = (.r𝐸)
184 rtelextdg2.7 . . . . . . . . 9 + = (+g𝐸)
185 rtelextdg2.8 . . . . . . . . 9 = (.g‘(mulGrp‘𝐸))
186 eqid 2729 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
187 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘2) = ((coe1𝐺)‘2)
188 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘1) = ((coe1𝐺)‘1)
189 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘0) = ((coe1𝐺)‘0)
190 eqid 2729 . . . . . . . . . . . 12 (PwSer1𝐾) = (PwSer1𝐾)
191 eqid 2729 . . . . . . . . . . . 12 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
192181, 1, 19, 12, 38, 190, 191, 182ressply1bas2 22129 . . . . . . . . . . 11 (𝜑 → (Base‘𝑃) = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
19346, 192eleqtrd 2830 . . . . . . . . . 10 (𝜑𝐺 ∈ ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
194193elin2d 4158 . . . . . . . . 9 (𝜑𝐺 ∈ (Base‘(Poly1𝐸)))
1951, 3, 19, 12, 46, 38ressdeg1 33520 . . . . . . . . . 10 (𝜑 → ((deg1𝐸)‘𝐺) = ((deg1𝐾)‘𝐺))
196195, 168eqtrd 2764 . . . . . . . . 9 (𝜑 → ((deg1𝐸)‘𝐺) = 2)
197181, 175, 61, 182, 183, 184, 185, 186, 3, 187, 188, 189, 36, 194, 196, 7evl1deg2 33531 . . . . . . . 8 (𝜑 → (((eval1𝐸)‘𝐺)‘𝑋) = ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))))
198111oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = ((1r𝐸) · (2 𝑋)))
199 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝐸) = (mulGrp‘𝐸)
200199, 61mgpbas 20049 . . . . . . . . . . . . 13 𝑉 = (Base‘(mulGrp‘𝐸))
201199ringmgp 20143 . . . . . . . . . . . . . 14 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
202102, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
203200, 185, 202, 29, 7mulgnn0cld 18993 . . . . . . . . . . . 12 (𝜑 → (2 𝑋) ∈ 𝑉)
20461, 183, 103, 102, 203ringlidmd 20176 . . . . . . . . . . 11 (𝜑 → ((1r𝐸) · (2 𝑋)) = (2 𝑋))
205198, 204eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = (2 𝑋))
20647fveq1i 6827 . . . . . . . . . . . . 13 ((coe1𝐺)‘1) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1)
207 1nn0 12419 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
20919, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21018, 33, 44, 208, 209syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21171neii 2927 . . . . . . . . . . . . . . . . . 18 ¬ 1 = 2
212 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → (𝑖 = 2 ↔ 1 = 2))
213212notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 1 → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
214213adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
215211, 214mpbiri 258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 1) → ¬ 𝑖 = 2)
216215iffalsed 4489 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 1) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
21754, 216, 208, 77fvmptd 6941 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(2 𝑌))‘1) = (0g𝐾))
21819, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
21918, 41, 43, 208, 218syl31anc 1375 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
22019, 12, 66, 35, 34, 67coe1sclmulfv 22186 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
22118, 65, 32, 208, 220syl121anc 1377 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
222 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 = 1) → 𝑖 = 1)
223222iftrued 4486 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 1) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (1r𝐾))
22470, 223, 208, 57fvmptd 6941 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((coe1𝑌)‘1) = (1r𝐾))
225224oveq2d 7369 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘1)) = (𝐴(.r𝐾)(1r𝐾)))
22666, 67, 53, 18, 65ringridmd 20177 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)(1r𝐾)) = 𝐴)
227221, 225, 2263eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = 𝐴)
228 0ne1 12218 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 1
229228nesymi 2982 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
230 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → (𝑖 = 0 ↔ 1 = 0))
231229, 230mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
232231adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 1) → ¬ 𝑖 = 0)
233232iffalsed 4489 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
23484, 233, 208, 77fvmptd 6941 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘(𝑈𝐵))‘1) = (0g𝐾))
235227, 234oveq12d 7371 . . . . . . . . . . . . . . . 16 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)) = (𝐴(+g𝐾)(0g𝐾)))
23666, 49, 52, 93, 65grpridd 18868 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(+g𝐾)(0g𝐾)) = 𝐴)
237219, 235, 2363eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = 𝐴)
238217, 237oveq12d 7371 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)) = ((0g𝐾)(+g𝐾)𝐴))
23966, 49, 52, 93, 65grplidd 18867 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)𝐴) = 𝐴)
240210, 238, 2393eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = 𝐴)
241206, 240eqtrid 2776 . . . . . . . . . . . 12 (𝜑 → ((coe1𝐺)‘1) = 𝐴)
242241oveq1d 7368 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘1) · 𝑋) = (𝐴 · 𝑋))
24347fveq1i 6827 . . . . . . . . . . . 12 ((coe1𝐺)‘0) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0)
244 0nn0 12418 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
245244a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
24619, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . . 14 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24718, 33, 44, 245, 246syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24888adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → ¬ 𝑖 = 2)
249248iffalsed 4489 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
25054, 249, 245, 77fvmptd 6941 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(2 𝑌))‘0) = (0g𝐾))
25119, 12, 13, 49coe1addfv 22168 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25218, 41, 43, 245, 251syl31anc 1375 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25319, 12, 66, 35, 34, 67coe1sclmulfv 22186 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
25418, 65, 32, 245, 253syl121anc 1377 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
255228neii 2927 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 0 = 1
256 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
257255, 256mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → ¬ 𝑖 = 1)
258257adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 0) → ¬ 𝑖 = 1)
259258iffalsed 4489 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 0) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
26070, 259, 245, 77fvmptd 6941 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1𝑌)‘0) = (0g𝐾))
261260oveq2d 7369 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘0)) = (𝐴(.r𝐾)(0g𝐾)))
262254, 261, 803eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (0g𝐾))
26319, 35, 66ply1sclid 22191 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → 𝐵 = ((coe1‘(𝑈𝐵))‘0))
26418, 82, 263syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = ((coe1‘(𝑈𝐵))‘0))
265264eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(𝑈𝐵))‘0) = 𝐵)
266262, 265oveq12d 7371 . . . . . . . . . . . . . . 15 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
26766, 49, 52, 93, 82grplidd 18867 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝐾)(+g𝐾)𝐵) = 𝐵)
268252, 266, 2673eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = 𝐵)
269250, 268oveq12d 7371 . . . . . . . . . . . . 13 (𝜑 → (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
270247, 269, 2673eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = 𝐵)
271243, 270eqtrid 2776 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘0) = 𝐵)
272242, 271oveq12d 7371 . . . . . . . . . 10 (𝜑 → ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0)) = ((𝐴 · 𝑋) + 𝐵))
273205, 272oveq12d 7371 . . . . . . . . 9 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)))
274 rtelextdg2.14 . . . . . . . . 9 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
275273, 274eqtrd 2764 . . . . . . . 8 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = 0 )
276180, 197, 2753eqtrd 2768 . . . . . . 7 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 )
27710, 173, 276rspcedvdw 3582 . . . . . 6 (𝜑 → ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )
278174, 1, 61, 114, 36, 38elirng 33672 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝑉 ∧ ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )))
2797, 277, 278mpbir2and 713 . . . . 5 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
2801, 2, 3, 4, 5, 6, 279algextdeg 33711 . . . 4 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)))
2811fveq2i 6829 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
28219, 281eqtri 2752 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
283 eqid 2729 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 } = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 }
284 eqid 2729 . . . . . 6 (RSpan‘𝑃) = (RSpan‘𝑃)
285 eqid 2729 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
286174, 282, 61, 5, 6, 7, 114, 283, 284, 285, 4minplycl 33692 . . . . 5 (𝜑 → ((𝐸 minPoly 𝐹)‘𝑋) ∈ (Base‘𝑃))
2871, 3, 19, 12, 286, 38ressdeg1 33520 . . . 4 (𝜑 → ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
288280, 287eqtrd 2764 . . 3 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
2891fveq2i 6829 . . . 4 (deg1𝐾) = (deg1‘(𝐸s 𝐹))
290174, 282, 61, 5, 6, 7, 114, 4, 289, 120, 12, 276, 46, 132minplymindeg 33694 . . 3 (𝜑 → ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)) ≤ ((deg1𝐾)‘𝐺))
291288, 290eqbrtrd 5117 . 2 (𝜑 → (𝐿[:]𝐾) ≤ ((deg1𝐾)‘𝐺))
292291, 168breqtrd 5121 1 (𝜑 → (𝐿[:]𝐾) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  cun 3903  cin 3904  wss 3905  ifcif 4478  {csn 4579   class class class wbr 5095  cmpt 5176  dom cdm 5623  cres 5625  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  cle 11169  2c2 12202  0cn0 12403  Basecbs 17139  s cress 17160  +gcplusg 17180  .rcmulr 17181  0gc0g 17362  Mndcmnd 18627  Grpcgrp 18831  .gcmg 18965  SubGrpcsubg 19018  mulGrpcmgp 20044  1rcur 20085  Ringcrg 20137  CRingccrg 20138  NzRingcnzr 20416  SubRingcsubrg 20473  DivRingcdr 20633  Fieldcfield 20634  SubDRingcsdrg 20690  RSpancrsp 21133  algSccascl 21778  PwSer1cps1 22076  var1cv1 22077  Poly1cpl1 22078  coe1cco1 22079   evalSub1 ces1 22217  eval1ce1 22218  deg1cdg1 25976  Monic1pcmn1 26048  idlGen1pcig1p 26052   fldGen cfldgen 33268  [:]cextdg 33626   IntgRing cirng 33669   minPoly cminply 33685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-inf 9352  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-ico 13273  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ocomp 17201  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-imas 17431  df-qus 17432  df-mre 17507  df-mrc 17508  df-mri 17509  df-acs 17510  df-proset 18219  df-drs 18220  df-poset 18238  df-ipo 18453  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-nsg 19022  df-eqg 19023  df-ghm 19111  df-gim 19157  df-cntz 19215  df-oppg 19244  df-lsm 19534  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-srg 20091  df-ring 20139  df-cring 20140  df-oppr 20241  df-dvdsr 20261  df-unit 20262  df-irred 20263  df-invr 20292  df-dvr 20305  df-rhm 20376  df-nzr 20417  df-subrng 20450  df-subrg 20474  df-rlreg 20598  df-domn 20599  df-idom 20600  df-drng 20635  df-field 20636  df-sdrg 20691  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lmim 20946  df-lmic 20947  df-lbs 20998  df-lvec 21026  df-sra 21096  df-rgmod 21097  df-lidl 21134  df-rsp 21135  df-2idl 21176  df-lpidl 21248  df-lpir 21249  df-pid 21263  df-cnfld 21281  df-dsmm 21658  df-frlm 21673  df-uvc 21709  df-lindf 21732  df-linds 21733  df-assa 21779  df-asp 21780  df-ascl 21781  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-evls 21998  df-evl 21999  df-psr1 22081  df-vr1 22082  df-ply1 22083  df-coe1 22084  df-evls1 22219  df-evl1 22220  df-mdeg 25977  df-deg1 25978  df-mon1 26053  df-uc1p 26054  df-q1p 26055  df-r1p 26056  df-ig1p 26057  df-fldgen 33269  df-mxidl 33416  df-dim 33585  df-fldext 33627  df-extdg 33628  df-irng 33670  df-minply 33686
This theorem is referenced by:  rtelextdg2  33713
  Copyright terms: Public domain W3C validator