Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2lem Structured version   Visualization version   GIF version

Theorem rtelextdg2lem 33723
Description: Lemma for rtelextdg2 33724: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
rtelextdg2lem.1 𝑌 = (var1𝐾)
rtelextdg2lem.2 = (+g𝑃)
rtelextdg2lem.3 = (.r𝑃)
rtelextdg2lem.4 = (.g‘(mulGrp‘𝑃))
rtelextdg2lem.5 𝑈 = (algSc‘𝑃)
rtelextdg2lem.6 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
Assertion
Ref Expression
rtelextdg2lem (𝜑 → (𝐿[:]𝐾) ≤ 2)

Proof of Theorem rtelextdg2lem
Dummy variables 𝑖 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rtelextdg2.1 . . . . 5 𝐾 = (𝐸s 𝐹)
2 rtelextdg2.2 . . . . 5 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
3 eqid 2730 . . . . 5 (deg1𝐸) = (deg1𝐸)
4 eqid 2730 . . . . 5 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
5 rtelextdg2.9 . . . . 5 (𝜑𝐸 ∈ Field)
6 rtelextdg2.10 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 rtelextdg2.11 . . . . . 6 (𝜑𝑋𝑉)
8 fveq2 6861 . . . . . . . . 9 (𝑝 = 𝐺 → ((𝐸 evalSub1 𝐹)‘𝑝) = ((𝐸 evalSub1 𝐹)‘𝐺))
98fveq1d 6863 . . . . . . . 8 (𝑝 = 𝐺 → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋))
109eqeq1d 2732 . . . . . . 7 (𝑝 = 𝐺 → ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 ↔ (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 ))
11 rtelextdg2lem.6 . . . . . . . . 9 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
12 eqid 2730 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
13 rtelextdg2lem.2 . . . . . . . . . 10 = (+g𝑃)
14 fldsdrgfld 20714 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
155, 6, 14syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸s 𝐹) ∈ Field)
1615fldcrngd 20658 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
171, 16eqeltrid 2833 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
1817crngringd 20162 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
19 rtelextdg2.4 . . . . . . . . . . . . 13 𝑃 = (Poly1𝐾)
2019ply1ring 22139 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2118, 20syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20158 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
23 eqid 2730 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2423, 12mgpbas 20061 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
25 rtelextdg2lem.4 . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
2623ringmgp 20155 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
28 2nn0 12466 . . . . . . . . . . . 12 2 ∈ ℕ0
2928a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
30 rtelextdg2lem.1 . . . . . . . . . . . . 13 𝑌 = (var1𝐾)
3130, 19, 12vr1cl 22109 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
3218, 31syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑃))
3324, 25, 27, 29, 32mulgnn0cld 19034 . . . . . . . . . 10 (𝜑 → (2 𝑌) ∈ (Base‘𝑃))
34 rtelextdg2lem.3 . . . . . . . . . . . 12 = (.r𝑃)
35 rtelextdg2lem.5 . . . . . . . . . . . . 13 𝑈 = (algSc‘𝑃)
365fldcrngd 20658 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
37 sdrgsubrg 20707 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubRing‘𝐸))
39 rtelextdg2.12 . . . . . . . . . . . . 13 (𝜑𝐴𝐹)
4019, 1, 35, 12, 36, 38, 39ressasclcl 33547 . . . . . . . . . . . 12 (𝜑 → (𝑈𝐴) ∈ (Base‘𝑃))
4112, 34, 21, 40, 32ringcld 20176 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃))
42 rtelextdg2.13 . . . . . . . . . . . 12 (𝜑𝐵𝐹)
4319, 1, 35, 12, 36, 38, 42ressasclcl 33547 . . . . . . . . . . 11 (𝜑 → (𝑈𝐵) ∈ (Base‘𝑃))
4412, 13, 22, 41, 43grpcld 18886 . . . . . . . . . 10 (𝜑 → (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃))
4512, 13, 22, 33, 44grpcld 18886 . . . . . . . . 9 (𝜑 → ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))) ∈ (Base‘𝑃))
4611, 45eqeltrid 2833 . . . . . . . 8 (𝜑𝐺 ∈ (Base‘𝑃))
4711fveq2i 6864 . . . . . . . . . . . 12 (coe1𝐺) = (coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
4847fveq1i 6862 . . . . . . . . . . 11 ((coe1𝐺)‘2) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2)
49 eqid 2730 . . . . . . . . . . . . . 14 (+g𝐾) = (+g𝐾)
5019, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . 13 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
5118, 33, 44, 29, 50syl31anc 1375 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
52 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝐾) = (0g𝐾)
53 eqid 2730 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
5419, 30, 25, 18, 29, 52, 53coe1mon 33561 . . . . . . . . . . . . . 14 (𝜑 → (coe1‘(2 𝑌)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 2, (1r𝐾), (0g𝐾))))
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 2) → 𝑖 = 2)
5655iftrued 4499 . . . . . . . . . . . . . 14 ((𝜑𝑖 = 2) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (1r𝐾))
57 fvexd 6876 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ V)
5854, 56, 29, 57fvmptd 6978 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(2 𝑌))‘2) = (1r𝐾))
5919, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
6018, 41, 43, 29, 59syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
61 rtelextdg2.5 . . . . . . . . . . . . . . . . . . . 20 𝑉 = (Base‘𝐸)
6261sdrgss 20709 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
631, 61ressbas2 17215 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑉𝐹 = (Base‘𝐾))
646, 62, 633syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (Base‘𝐾))
6539, 64eleqtrd 2831 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (Base‘𝐾))
66 eqid 2730 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
67 eqid 2730 . . . . . . . . . . . . . . . . . 18 (.r𝐾) = (.r𝐾)
6819, 12, 66, 35, 34, 67coe1sclmulfv 22176 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
6918, 65, 32, 29, 68syl121anc 1377 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
7019, 30, 18, 52, 53coe1vr1 33564 . . . . . . . . . . . . . . . . . 18 (𝜑 → (coe1𝑌) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 1, (1r𝐾), (0g𝐾))))
71 1ne2 12396 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 2
7271nesymi 2983 . . . . . . . . . . . . . . . . . . . . 21 ¬ 2 = 1
73 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → (𝑖 = 1 ↔ 2 = 1))
7472, 73mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 1)
7574adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 2) → ¬ 𝑖 = 1)
7675iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 2) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
77 fvexd 6876 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐾) ∈ V)
7870, 76, 29, 77fvmptd 6978 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1𝑌)‘2) = (0g𝐾))
7978oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘2)) = (𝐴(.r𝐾)(0g𝐾)))
8066, 67, 52, 18, 65ringrzd 20212 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)(0g𝐾)) = (0g𝐾))
8169, 79, 803eqtrd 2769 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (0g𝐾))
8242, 64eleqtrd 2831 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (Base‘𝐾))
8319, 35, 66, 52coe1scl 22180 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
8418, 82, 83syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
85 0ne2 12395 . . . . . . . . . . . . . . . . . . . 20 0 ≠ 2
8685neii 2928 . . . . . . . . . . . . . . . . . . 19 ¬ 0 = 2
87 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 0 → (𝑖 = 2 ↔ 0 = 2))
8886, 87mtbiri 327 . . . . . . . . . . . . . . . . . 18 (𝑖 = 0 → ¬ 𝑖 = 2)
8988, 55nsyl3 138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 2) → ¬ 𝑖 = 0)
9089iffalsed 4502 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 2) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
9184, 90, 29, 77fvmptd 6978 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(𝑈𝐵))‘2) = (0g𝐾))
9281, 91oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)) = ((0g𝐾)(+g𝐾)(0g𝐾)))
9318ringgrpd 20158 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Grp)
9466, 52grpidcl 18904 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Grp → (0g𝐾) ∈ (Base‘𝐾))
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐾) ∈ (Base‘𝐾))
9666, 49, 52, 93, 95grpridd 18909 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)(0g𝐾)) = (0g𝐾))
9760, 92, 963eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (0g𝐾))
9858, 97oveq12d 7408 . . . . . . . . . . . 12 (𝜑 → (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)) = ((1r𝐾)(+g𝐾)(0g𝐾)))
9966, 53ringidcl 20181 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
10018, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
10166, 49, 52, 93, 100grpridd 18909 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐾))
10236crngringd 20162 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
103 eqid 2730 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
104103subrg1cl 20496 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
10538, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝐹)
1066, 62syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹𝑉)
1071, 61, 103ress1r 33192 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝐹𝐹𝑉) → (1r𝐸) = (1r𝐾))
108102, 105, 106, 107syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐾))
109101, 108eqtr4d 2768 . . . . . . . . . . . 12 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐸))
11051, 98, 1093eqtrd 2769 . . . . . . . . . . 11 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (1r𝐸))
11148, 110eqtrid 2777 . . . . . . . . . 10 (𝜑 → ((coe1𝐺)‘2) = (1r𝐸))
1125flddrngd 20657 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
113 drngnzr 20664 . . . . . . . . . . 11 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
114 rtelextdg2.3 . . . . . . . . . . . 12 0 = (0g𝐸)
115103, 114nzrnz 20431 . . . . . . . . . . 11 (𝐸 ∈ NzRing → (1r𝐸) ≠ 0 )
116112, 113, 1153syl 18 . . . . . . . . . 10 (𝜑 → (1r𝐸) ≠ 0 )
117111, 116eqnetrd 2993 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘2) ≠ 0 )
118 fveq2 6861 . . . . . . . . . . 11 (𝐺 = (0g𝑃) → (coe1𝐺) = (coe1‘(0g𝑃)))
119118fveq1d 6863 . . . . . . . . . 10 (𝐺 = (0g𝑃) → ((coe1𝐺)‘2) = ((coe1‘(0g𝑃))‘2))
120 eqid 2730 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
12119, 120, 52, 18, 29coe1zfv 33563 . . . . . . . . . . 11 (𝜑 → ((coe1‘(0g𝑃))‘2) = (0g𝐾))
122102ringgrpd 20158 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Grp)
123122grpmndd 18885 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
124 subrgsubg 20493 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
12538, 124syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubGrp‘𝐸))
126114subg0cl 19073 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 0𝐹)
127125, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐹)
1281, 61, 114ress0g 18696 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ 0𝐹𝐹𝑉) → 0 = (0g𝐾))
129123, 127, 106, 128syl3anc 1373 . . . . . . . . . . 11 (𝜑0 = (0g𝐾))
130121, 129eqtr4d 2768 . . . . . . . . . 10 (𝜑 → ((coe1‘(0g𝑃))‘2) = 0 )
131119, 130sylan9eqr 2787 . . . . . . . . 9 ((𝜑𝐺 = (0g𝑃)) → ((coe1𝐺)‘2) = 0 )
132117, 131mteqand 3017 . . . . . . . 8 (𝜑𝐺 ≠ (0g𝑃))
13311fveq2i 6864 . . . . . . . . . . 11 ((deg1𝐾)‘𝐺) = ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
134 eqid 2730 . . . . . . . . . . . . 13 (deg1𝐾) = (deg1𝐾)
135 2re 12267 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
136135rexri 11239 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ*)
138134, 19, 12deg1xrcl 25994 . . . . . . . . . . . . . . . . 17 (((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
13941, 138syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
140 1xr 11240 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
141140a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ*)
142134, 19, 66, 12, 34, 35deg1mul3le 26029 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
14318, 65, 32, 142syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
1441, 15eqeltrid 2833 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ Field)
145144flddrngd 20657 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ DivRing)
146 drngnzr 20664 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
147145, 146syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ NzRing)
148134, 19, 30, 147deg1vr 33565 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘𝑌) = 1)
149143, 148breqtrd 5136 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ 1)
150 1lt2 12359 . . . . . . . . . . . . . . . . 17 1 < 2
151150a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
152139, 141, 137, 149, 151xrlelttrd 13127 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) < 2)
153134, 19, 12deg1xrcl 25994 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵) ∈ (Base‘𝑃) → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
15443, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
155 0xr 11228 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
156155a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℝ*)
157134, 19, 66, 35deg1sclle 26024 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
15818, 82, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
159 2pos 12296 . . . . . . . . . . . . . . . . 17 0 < 2
160159a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
161154, 156, 137, 158, 160xrlelttrd 13127 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) < 2)
16219, 134, 18, 12, 13, 41, 43, 137, 152, 161deg1addlt 33572 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < 2)
163134, 19, 30, 23, 25deg1pw 26033 . . . . . . . . . . . . . . 15 ((𝐾 ∈ NzRing ∧ 2 ∈ ℕ0) → ((deg1𝐾)‘(2 𝑌)) = 2)
164147, 29, 163syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(2 𝑌)) = 2)
165162, 164breqtrrd 5138 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < ((deg1𝐾)‘(2 𝑌)))
16619, 134, 18, 12, 13, 33, 44, 165deg1add 26015 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = ((deg1𝐾)‘(2 𝑌)))
167166, 164eqtrd 2765 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = 2)
168133, 167eqtrid 2777 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘𝐺) = 2)
169168fveq2d 6865 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = ((coe1𝐺)‘2))
170169, 111, 1083eqtrd 2769 . . . . . . . 8 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾))
171 eqid 2730 . . . . . . . . 9 (Monic1p𝐾) = (Monic1p𝐾)
17219, 12, 120, 134, 171, 53ismon1p 26055 . . . . . . . 8 (𝐺 ∈ (Monic1p𝐾) ↔ (𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾)))
17346, 132, 170, 172syl3anbrc 1344 . . . . . . 7 (𝜑𝐺 ∈ (Monic1p𝐾))
174 eqid 2730 . . . . . . . . . . . 12 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
175 eqid 2730 . . . . . . . . . . . 12 (eval1𝐸) = (eval1𝐸)
176174, 61, 19, 1, 12, 175, 36, 38ressply1evl 22264 . . . . . . . . . . 11 (𝜑 → (𝐸 evalSub1 𝐹) = ((eval1𝐸) ↾ (Base‘𝑃)))
177176fveq1d 6863 . . . . . . . . . 10 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺))
17846fvresd 6881 . . . . . . . . . 10 (𝜑 → (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺) = ((eval1𝐸)‘𝐺))
179177, 178eqtrd 2765 . . . . . . . . 9 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = ((eval1𝐸)‘𝐺))
180179fveq1d 6863 . . . . . . . 8 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = (((eval1𝐸)‘𝐺)‘𝑋))
181 eqid 2730 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
182 eqid 2730 . . . . . . . . 9 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
183 rtelextdg2.6 . . . . . . . . 9 · = (.r𝐸)
184 rtelextdg2.7 . . . . . . . . 9 + = (+g𝐸)
185 rtelextdg2.8 . . . . . . . . 9 = (.g‘(mulGrp‘𝐸))
186 eqid 2730 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
187 eqid 2730 . . . . . . . . 9 ((coe1𝐺)‘2) = ((coe1𝐺)‘2)
188 eqid 2730 . . . . . . . . 9 ((coe1𝐺)‘1) = ((coe1𝐺)‘1)
189 eqid 2730 . . . . . . . . 9 ((coe1𝐺)‘0) = ((coe1𝐺)‘0)
190 eqid 2730 . . . . . . . . . . . 12 (PwSer1𝐾) = (PwSer1𝐾)
191 eqid 2730 . . . . . . . . . . . 12 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
192181, 1, 19, 12, 38, 190, 191, 182ressply1bas2 22119 . . . . . . . . . . 11 (𝜑 → (Base‘𝑃) = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
19346, 192eleqtrd 2831 . . . . . . . . . 10 (𝜑𝐺 ∈ ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
194193elin2d 4171 . . . . . . . . 9 (𝜑𝐺 ∈ (Base‘(Poly1𝐸)))
1951, 3, 19, 12, 46, 38ressdeg1 33542 . . . . . . . . . 10 (𝜑 → ((deg1𝐸)‘𝐺) = ((deg1𝐾)‘𝐺))
196195, 168eqtrd 2765 . . . . . . . . 9 (𝜑 → ((deg1𝐸)‘𝐺) = 2)
197181, 175, 61, 182, 183, 184, 185, 186, 3, 187, 188, 189, 36, 194, 196, 7evl1deg2 33553 . . . . . . . 8 (𝜑 → (((eval1𝐸)‘𝐺)‘𝑋) = ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))))
198111oveq1d 7405 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = ((1r𝐸) · (2 𝑋)))
199 eqid 2730 . . . . . . . . . . . . . 14 (mulGrp‘𝐸) = (mulGrp‘𝐸)
200199, 61mgpbas 20061 . . . . . . . . . . . . 13 𝑉 = (Base‘(mulGrp‘𝐸))
201199ringmgp 20155 . . . . . . . . . . . . . 14 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
202102, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
203200, 185, 202, 29, 7mulgnn0cld 19034 . . . . . . . . . . . 12 (𝜑 → (2 𝑋) ∈ 𝑉)
20461, 183, 103, 102, 203ringlidmd 20188 . . . . . . . . . . 11 (𝜑 → ((1r𝐸) · (2 𝑋)) = (2 𝑋))
205198, 204eqtrd 2765 . . . . . . . . . 10 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = (2 𝑋))
20647fveq1i 6862 . . . . . . . . . . . . 13 ((coe1𝐺)‘1) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1)
207 1nn0 12465 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
20919, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21018, 33, 44, 208, 209syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21171neii 2928 . . . . . . . . . . . . . . . . . 18 ¬ 1 = 2
212 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → (𝑖 = 2 ↔ 1 = 2))
213212notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 1 → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
214213adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
215211, 214mpbiri 258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 1) → ¬ 𝑖 = 2)
216215iffalsed 4502 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 1) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
21754, 216, 208, 77fvmptd 6978 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(2 𝑌))‘1) = (0g𝐾))
21819, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
21918, 41, 43, 208, 218syl31anc 1375 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
22019, 12, 66, 35, 34, 67coe1sclmulfv 22176 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
22118, 65, 32, 208, 220syl121anc 1377 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
222 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 = 1) → 𝑖 = 1)
223222iftrued 4499 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 1) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (1r𝐾))
22470, 223, 208, 57fvmptd 6978 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((coe1𝑌)‘1) = (1r𝐾))
225224oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘1)) = (𝐴(.r𝐾)(1r𝐾)))
22666, 67, 53, 18, 65ringridmd 20189 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)(1r𝐾)) = 𝐴)
227221, 225, 2263eqtrd 2769 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = 𝐴)
228 0ne1 12264 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 1
229228nesymi 2983 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
230 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → (𝑖 = 0 ↔ 1 = 0))
231229, 230mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
232231adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 1) → ¬ 𝑖 = 0)
233232iffalsed 4502 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
23484, 233, 208, 77fvmptd 6978 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘(𝑈𝐵))‘1) = (0g𝐾))
235227, 234oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)) = (𝐴(+g𝐾)(0g𝐾)))
23666, 49, 52, 93, 65grpridd 18909 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(+g𝐾)(0g𝐾)) = 𝐴)
237219, 235, 2363eqtrd 2769 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = 𝐴)
238217, 237oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)) = ((0g𝐾)(+g𝐾)𝐴))
23966, 49, 52, 93, 65grplidd 18908 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)𝐴) = 𝐴)
240210, 238, 2393eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = 𝐴)
241206, 240eqtrid 2777 . . . . . . . . . . . 12 (𝜑 → ((coe1𝐺)‘1) = 𝐴)
242241oveq1d 7405 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘1) · 𝑋) = (𝐴 · 𝑋))
24347fveq1i 6862 . . . . . . . . . . . 12 ((coe1𝐺)‘0) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0)
244 0nn0 12464 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
245244a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
24619, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . . 14 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24718, 33, 44, 245, 246syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24888adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → ¬ 𝑖 = 2)
249248iffalsed 4502 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
25054, 249, 245, 77fvmptd 6978 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(2 𝑌))‘0) = (0g𝐾))
25119, 12, 13, 49coe1addfv 22158 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25218, 41, 43, 245, 251syl31anc 1375 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25319, 12, 66, 35, 34, 67coe1sclmulfv 22176 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
25418, 65, 32, 245, 253syl121anc 1377 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
255228neii 2928 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 0 = 1
256 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
257255, 256mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → ¬ 𝑖 = 1)
258257adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 0) → ¬ 𝑖 = 1)
259258iffalsed 4502 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 0) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
26070, 259, 245, 77fvmptd 6978 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1𝑌)‘0) = (0g𝐾))
261260oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘0)) = (𝐴(.r𝐾)(0g𝐾)))
262254, 261, 803eqtrd 2769 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (0g𝐾))
26319, 35, 66ply1sclid 22181 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → 𝐵 = ((coe1‘(𝑈𝐵))‘0))
26418, 82, 263syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = ((coe1‘(𝑈𝐵))‘0))
265264eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(𝑈𝐵))‘0) = 𝐵)
266262, 265oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
26766, 49, 52, 93, 82grplidd 18908 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝐾)(+g𝐾)𝐵) = 𝐵)
268252, 266, 2673eqtrd 2769 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = 𝐵)
269250, 268oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
270247, 269, 2673eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = 𝐵)
271243, 270eqtrid 2777 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘0) = 𝐵)
272242, 271oveq12d 7408 . . . . . . . . . 10 (𝜑 → ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0)) = ((𝐴 · 𝑋) + 𝐵))
273205, 272oveq12d 7408 . . . . . . . . 9 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)))
274 rtelextdg2.14 . . . . . . . . 9 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
275273, 274eqtrd 2765 . . . . . . . 8 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = 0 )
276180, 197, 2753eqtrd 2769 . . . . . . 7 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 )
27710, 173, 276rspcedvdw 3594 . . . . . 6 (𝜑 → ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )
278174, 1, 61, 114, 36, 38elirng 33688 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝑉 ∧ ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )))
2797, 277, 278mpbir2and 713 . . . . 5 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
2801, 2, 3, 4, 5, 6, 279algextdeg 33722 . . . 4 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)))
2811fveq2i 6864 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
28219, 281eqtri 2753 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
283 eqid 2730 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 } = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 }
284 eqid 2730 . . . . . 6 (RSpan‘𝑃) = (RSpan‘𝑃)
285 eqid 2730 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
286174, 282, 61, 5, 6, 7, 114, 283, 284, 285, 4minplycl 33703 . . . . 5 (𝜑 → ((𝐸 minPoly 𝐹)‘𝑋) ∈ (Base‘𝑃))
2871, 3, 19, 12, 286, 38ressdeg1 33542 . . . 4 (𝜑 → ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
288280, 287eqtrd 2765 . . 3 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
2891fveq2i 6864 . . . 4 (deg1𝐾) = (deg1‘(𝐸s 𝐹))
290174, 282, 61, 5, 6, 7, 114, 4, 289, 120, 12, 276, 46, 132minplymindeg 33705 . . 3 (𝜑 → ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)) ≤ ((deg1𝐾)‘𝐺))
291288, 290eqbrtrd 5132 . 2 (𝜑 → (𝐿[:]𝐾) ≤ ((deg1𝐾)‘𝐺))
292291, 168breqtrd 5136 1 (𝜑 → (𝐿[:]𝐾) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  cun 3915  cin 3916  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  cres 5643  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  *cxr 11214   < clt 11215  cle 11216  2c2 12248  0cn0 12449  Basecbs 17186  s cress 17207  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Mndcmnd 18668  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  CRingccrg 20150  NzRingcnzr 20428  SubRingcsubrg 20485  DivRingcdr 20645  Fieldcfield 20646  SubDRingcsdrg 20702  RSpancrsp 21124  algSccascl 21768  PwSer1cps1 22066  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   evalSub1 ces1 22207  eval1ce1 22208  deg1cdg1 25966  Monic1pcmn1 26038  idlGen1pcig1p 26042   fldGen cfldgen 33267  [:]cextdg 33643   IntgRing cirng 33685   minPoly cminply 33696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-rpss 7702  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-r1 9724  df-rank 9725  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ocomp 17248  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-mri 17556  df-acs 17557  df-proset 18262  df-drs 18263  df-poset 18281  df-ipo 18494  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-irred 20275  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-idom 20612  df-drng 20647  df-field 20648  df-sdrg 20703  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lmim 20937  df-lmic 20938  df-lbs 20989  df-lvec 21017  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-lpidl 21239  df-lpir 21240  df-pid 21254  df-cnfld 21272  df-dsmm 21648  df-frlm 21663  df-uvc 21699  df-lindf 21722  df-linds 21723  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968  df-mon1 26043  df-uc1p 26044  df-q1p 26045  df-r1p 26046  df-ig1p 26047  df-fldgen 33268  df-mxidl 33438  df-dim 33602  df-fldext 33644  df-extdg 33645  df-irng 33686  df-minply 33697
This theorem is referenced by:  rtelextdg2  33724
  Copyright terms: Public domain W3C validator