Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rtelextdg2lem Structured version   Visualization version   GIF version

Theorem rtelextdg2lem 33689
Description: Lemma for rtelextdg2 33690: If an element 𝑋 is a solution of a quadratic equation, then the degree of its field extension is at most 2. (Contributed by Thierry Arnoux, 22-Jun-2025.)
Hypotheses
Ref Expression
rtelextdg2.1 𝐾 = (𝐸s 𝐹)
rtelextdg2.2 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
rtelextdg2.3 0 = (0g𝐸)
rtelextdg2.4 𝑃 = (Poly1𝐾)
rtelextdg2.5 𝑉 = (Base‘𝐸)
rtelextdg2.6 · = (.r𝐸)
rtelextdg2.7 + = (+g𝐸)
rtelextdg2.8 = (.g‘(mulGrp‘𝐸))
rtelextdg2.9 (𝜑𝐸 ∈ Field)
rtelextdg2.10 (𝜑𝐹 ∈ (SubDRing‘𝐸))
rtelextdg2.11 (𝜑𝑋𝑉)
rtelextdg2.12 (𝜑𝐴𝐹)
rtelextdg2.13 (𝜑𝐵𝐹)
rtelextdg2.14 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
rtelextdg2lem.1 𝑌 = (var1𝐾)
rtelextdg2lem.2 = (+g𝑃)
rtelextdg2lem.3 = (.r𝑃)
rtelextdg2lem.4 = (.g‘(mulGrp‘𝑃))
rtelextdg2lem.5 𝑈 = (algSc‘𝑃)
rtelextdg2lem.6 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
Assertion
Ref Expression
rtelextdg2lem (𝜑 → (𝐿[:]𝐾) ≤ 2)

Proof of Theorem rtelextdg2lem
Dummy variables 𝑖 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rtelextdg2.1 . . . . 5 𝐾 = (𝐸s 𝐹)
2 rtelextdg2.2 . . . . 5 𝐿 = (𝐸s (𝐸 fldGen (𝐹 ∪ {𝑋})))
3 eqid 2729 . . . . 5 (deg1𝐸) = (deg1𝐸)
4 eqid 2729 . . . . 5 (𝐸 minPoly 𝐹) = (𝐸 minPoly 𝐹)
5 rtelextdg2.9 . . . . 5 (𝜑𝐸 ∈ Field)
6 rtelextdg2.10 . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
7 rtelextdg2.11 . . . . . 6 (𝜑𝑋𝑉)
8 fveq2 6840 . . . . . . . . 9 (𝑝 = 𝐺 → ((𝐸 evalSub1 𝐹)‘𝑝) = ((𝐸 evalSub1 𝐹)‘𝐺))
98fveq1d 6842 . . . . . . . 8 (𝑝 = 𝐺 → (((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋))
109eqeq1d 2731 . . . . . . 7 (𝑝 = 𝐺 → ((((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 ↔ (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 ))
11 rtelextdg2lem.6 . . . . . . . . 9 𝐺 = ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))
12 eqid 2729 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
13 rtelextdg2lem.2 . . . . . . . . . 10 = (+g𝑃)
14 fldsdrgfld 20683 . . . . . . . . . . . . . . . 16 ((𝐸 ∈ Field ∧ 𝐹 ∈ (SubDRing‘𝐸)) → (𝐸s 𝐹) ∈ Field)
155, 6, 14syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸s 𝐹) ∈ Field)
1615fldcrngd 20627 . . . . . . . . . . . . . 14 (𝜑 → (𝐸s 𝐹) ∈ CRing)
171, 16eqeltrid 2832 . . . . . . . . . . . . 13 (𝜑𝐾 ∈ CRing)
1817crngringd 20131 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Ring)
19 rtelextdg2.4 . . . . . . . . . . . . 13 𝑃 = (Poly1𝐾)
2019ply1ring 22108 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑃 ∈ Ring)
2118, 20syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ Ring)
2221ringgrpd 20127 . . . . . . . . . 10 (𝜑𝑃 ∈ Grp)
23 eqid 2729 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2423, 12mgpbas 20030 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
25 rtelextdg2lem.4 . . . . . . . . . . 11 = (.g‘(mulGrp‘𝑃))
2623ringmgp 20124 . . . . . . . . . . . 12 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (mulGrp‘𝑃) ∈ Mnd)
28 2nn0 12435 . . . . . . . . . . . 12 2 ∈ ℕ0
2928a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
30 rtelextdg2lem.1 . . . . . . . . . . . . 13 𝑌 = (var1𝐾)
3130, 19, 12vr1cl 22078 . . . . . . . . . . . 12 (𝐾 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
3218, 31syl 17 . . . . . . . . . . 11 (𝜑𝑌 ∈ (Base‘𝑃))
3324, 25, 27, 29, 32mulgnn0cld 19003 . . . . . . . . . 10 (𝜑 → (2 𝑌) ∈ (Base‘𝑃))
34 rtelextdg2lem.3 . . . . . . . . . . . 12 = (.r𝑃)
35 rtelextdg2lem.5 . . . . . . . . . . . . 13 𝑈 = (algSc‘𝑃)
365fldcrngd 20627 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ CRing)
37 sdrgsubrg 20676 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹 ∈ (SubRing‘𝐸))
386, 37syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubRing‘𝐸))
39 rtelextdg2.12 . . . . . . . . . . . . 13 (𝜑𝐴𝐹)
4019, 1, 35, 12, 36, 38, 39ressasclcl 33513 . . . . . . . . . . . 12 (𝜑 → (𝑈𝐴) ∈ (Base‘𝑃))
4112, 34, 21, 40, 32ringcld 20145 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃))
42 rtelextdg2.13 . . . . . . . . . . . 12 (𝜑𝐵𝐹)
4319, 1, 35, 12, 36, 38, 42ressasclcl 33513 . . . . . . . . . . 11 (𝜑 → (𝑈𝐵) ∈ (Base‘𝑃))
4412, 13, 22, 41, 43grpcld 18855 . . . . . . . . . 10 (𝜑 → (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃))
4512, 13, 22, 33, 44grpcld 18855 . . . . . . . . 9 (𝜑 → ((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))) ∈ (Base‘𝑃))
4611, 45eqeltrid 2832 . . . . . . . 8 (𝜑𝐺 ∈ (Base‘𝑃))
4711fveq2i 6843 . . . . . . . . . . . 12 (coe1𝐺) = (coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
4847fveq1i 6841 . . . . . . . . . . 11 ((coe1𝐺)‘2) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2)
49 eqid 2729 . . . . . . . . . . . . . 14 (+g𝐾) = (+g𝐾)
5019, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . 13 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
5118, 33, 44, 29, 50syl31anc 1375 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)))
52 eqid 2729 . . . . . . . . . . . . . . 15 (0g𝐾) = (0g𝐾)
53 eqid 2729 . . . . . . . . . . . . . . 15 (1r𝐾) = (1r𝐾)
5419, 30, 25, 18, 29, 52, 53coe1mon 33527 . . . . . . . . . . . . . 14 (𝜑 → (coe1‘(2 𝑌)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 2, (1r𝐾), (0g𝐾))))
55 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 2) → 𝑖 = 2)
5655iftrued 4492 . . . . . . . . . . . . . 14 ((𝜑𝑖 = 2) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (1r𝐾))
57 fvexd 6855 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ V)
5854, 56, 29, 57fvmptd 6957 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(2 𝑌))‘2) = (1r𝐾))
5919, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
6018, 41, 43, 29, 59syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)))
61 rtelextdg2.5 . . . . . . . . . . . . . . . . . . . 20 𝑉 = (Base‘𝐸)
6261sdrgss 20678 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (SubDRing‘𝐸) → 𝐹𝑉)
631, 61ressbas2 17184 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑉𝐹 = (Base‘𝐾))
646, 62, 633syl 18 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (Base‘𝐾))
6539, 64eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ∈ (Base‘𝐾))
66 eqid 2729 . . . . . . . . . . . . . . . . . 18 (Base‘𝐾) = (Base‘𝐾)
67 eqid 2729 . . . . . . . . . . . . . . . . . 18 (.r𝐾) = (.r𝐾)
6819, 12, 66, 35, 34, 67coe1sclmulfv 22145 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 2 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
6918, 65, 32, 29, 68syl121anc 1377 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (𝐴(.r𝐾)((coe1𝑌)‘2)))
7019, 30, 18, 52, 53coe1vr1 33530 . . . . . . . . . . . . . . . . . 18 (𝜑 → (coe1𝑌) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 1, (1r𝐾), (0g𝐾))))
71 1ne2 12365 . . . . . . . . . . . . . . . . . . . . . 22 1 ≠ 2
7271nesymi 2982 . . . . . . . . . . . . . . . . . . . . 21 ¬ 2 = 1
73 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 2 → (𝑖 = 1 ↔ 2 = 1))
7472, 73mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 2 → ¬ 𝑖 = 1)
7574adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 2) → ¬ 𝑖 = 1)
7675iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 2) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
77 fvexd 6855 . . . . . . . . . . . . . . . . . 18 (𝜑 → (0g𝐾) ∈ V)
7870, 76, 29, 77fvmptd 6957 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1𝑌)‘2) = (0g𝐾))
7978oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘2)) = (𝐴(.r𝐾)(0g𝐾)))
8066, 67, 52, 18, 65ringrzd 20181 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(.r𝐾)(0g𝐾)) = (0g𝐾))
8169, 79, 803eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘2) = (0g𝐾))
8242, 64eleqtrd 2830 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (Base‘𝐾))
8319, 35, 66, 52coe1scl 22149 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
8418, 82, 83syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (coe1‘(𝑈𝐵)) = (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, 𝐵, (0g𝐾))))
85 0ne2 12364 . . . . . . . . . . . . . . . . . . . 20 0 ≠ 2
8685neii 2927 . . . . . . . . . . . . . . . . . . 19 ¬ 0 = 2
87 eqeq1 2733 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 0 → (𝑖 = 2 ↔ 0 = 2))
8886, 87mtbiri 327 . . . . . . . . . . . . . . . . . 18 (𝑖 = 0 → ¬ 𝑖 = 2)
8988, 55nsyl3 138 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 2) → ¬ 𝑖 = 0)
9089iffalsed 4495 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 2) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
9184, 90, 29, 77fvmptd 6957 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(𝑈𝐵))‘2) = (0g𝐾))
9281, 91oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘2)(+g𝐾)((coe1‘(𝑈𝐵))‘2)) = ((0g𝐾)(+g𝐾)(0g𝐾)))
9318ringgrpd 20127 . . . . . . . . . . . . . . 15 (𝜑𝐾 ∈ Grp)
9466, 52grpidcl 18873 . . . . . . . . . . . . . . . 16 (𝐾 ∈ Grp → (0g𝐾) ∈ (Base‘𝐾))
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (0g𝐾) ∈ (Base‘𝐾))
9666, 49, 52, 93, 95grpridd 18878 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)(0g𝐾)) = (0g𝐾))
9760, 92, 963eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2) = (0g𝐾))
9858, 97oveq12d 7387 . . . . . . . . . . . 12 (𝜑 → (((coe1‘(2 𝑌))‘2)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘2)) = ((1r𝐾)(+g𝐾)(0g𝐾)))
9966, 53ringidcl 20150 . . . . . . . . . . . . . . 15 (𝐾 ∈ Ring → (1r𝐾) ∈ (Base‘𝐾))
10018, 99syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐾) ∈ (Base‘𝐾))
10166, 49, 52, 93, 100grpridd 18878 . . . . . . . . . . . . 13 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐾))
10236crngringd 20131 . . . . . . . . . . . . . 14 (𝜑𝐸 ∈ Ring)
103 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝐸) = (1r𝐸)
104103subrg1cl 20465 . . . . . . . . . . . . . . 15 (𝐹 ∈ (SubRing‘𝐸) → (1r𝐸) ∈ 𝐹)
10538, 104syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1r𝐸) ∈ 𝐹)
1066, 62syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹𝑉)
1071, 61, 103ress1r 33158 . . . . . . . . . . . . . 14 ((𝐸 ∈ Ring ∧ (1r𝐸) ∈ 𝐹𝐹𝑉) → (1r𝐸) = (1r𝐾))
108102, 105, 106, 107syl3anc 1373 . . . . . . . . . . . . 13 (𝜑 → (1r𝐸) = (1r𝐾))
109101, 108eqtr4d 2767 . . . . . . . . . . . 12 (𝜑 → ((1r𝐾)(+g𝐾)(0g𝐾)) = (1r𝐸))
11051, 98, 1093eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘2) = (1r𝐸))
11148, 110eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((coe1𝐺)‘2) = (1r𝐸))
1125flddrngd 20626 . . . . . . . . . . 11 (𝜑𝐸 ∈ DivRing)
113 drngnzr 20633 . . . . . . . . . . 11 (𝐸 ∈ DivRing → 𝐸 ∈ NzRing)
114 rtelextdg2.3 . . . . . . . . . . . 12 0 = (0g𝐸)
115103, 114nzrnz 20400 . . . . . . . . . . 11 (𝐸 ∈ NzRing → (1r𝐸) ≠ 0 )
116112, 113, 1153syl 18 . . . . . . . . . 10 (𝜑 → (1r𝐸) ≠ 0 )
117111, 116eqnetrd 2992 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘2) ≠ 0 )
118 fveq2 6840 . . . . . . . . . . 11 (𝐺 = (0g𝑃) → (coe1𝐺) = (coe1‘(0g𝑃)))
119118fveq1d 6842 . . . . . . . . . 10 (𝐺 = (0g𝑃) → ((coe1𝐺)‘2) = ((coe1‘(0g𝑃))‘2))
120 eqid 2729 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
12119, 120, 52, 18, 29coe1zfv 33529 . . . . . . . . . . 11 (𝜑 → ((coe1‘(0g𝑃))‘2) = (0g𝐾))
122102ringgrpd 20127 . . . . . . . . . . . . 13 (𝜑𝐸 ∈ Grp)
123122grpmndd 18854 . . . . . . . . . . . 12 (𝜑𝐸 ∈ Mnd)
124 subrgsubg 20462 . . . . . . . . . . . . . 14 (𝐹 ∈ (SubRing‘𝐸) → 𝐹 ∈ (SubGrp‘𝐸))
12538, 124syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (SubGrp‘𝐸))
126114subg0cl 19042 . . . . . . . . . . . . 13 (𝐹 ∈ (SubGrp‘𝐸) → 0𝐹)
127125, 126syl 17 . . . . . . . . . . . 12 (𝜑0𝐹)
1281, 61, 114ress0g 18665 . . . . . . . . . . . 12 ((𝐸 ∈ Mnd ∧ 0𝐹𝐹𝑉) → 0 = (0g𝐾))
129123, 127, 106, 128syl3anc 1373 . . . . . . . . . . 11 (𝜑0 = (0g𝐾))
130121, 129eqtr4d 2767 . . . . . . . . . 10 (𝜑 → ((coe1‘(0g𝑃))‘2) = 0 )
131119, 130sylan9eqr 2786 . . . . . . . . 9 ((𝜑𝐺 = (0g𝑃)) → ((coe1𝐺)‘2) = 0 )
132117, 131mteqand 3016 . . . . . . . 8 (𝜑𝐺 ≠ (0g𝑃))
13311fveq2i 6843 . . . . . . . . . . 11 ((deg1𝐾)‘𝐺) = ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))
134 eqid 2729 . . . . . . . . . . . . 13 (deg1𝐾) = (deg1𝐾)
135 2re 12236 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
136135rexri 11208 . . . . . . . . . . . . . . . 16 2 ∈ ℝ*
137136a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 2 ∈ ℝ*)
138134, 19, 12deg1xrcl 25963 . . . . . . . . . . . . . . . . 17 (((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
13941, 138syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ∈ ℝ*)
140 1xr 11209 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ*
141140a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℝ*)
142134, 19, 66, 12, 34, 35deg1mul3le 25998 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
14318, 65, 32, 142syl3anc 1373 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ ((deg1𝐾)‘𝑌))
1441, 15eqeltrid 2832 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐾 ∈ Field)
145144flddrngd 20626 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ∈ DivRing)
146 drngnzr 20633 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ DivRing → 𝐾 ∈ NzRing)
147145, 146syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ NzRing)
148134, 19, 30, 147deg1vr 33531 . . . . . . . . . . . . . . . . 17 (𝜑 → ((deg1𝐾)‘𝑌) = 1)
149143, 148breqtrd 5128 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) ≤ 1)
150 1lt2 12328 . . . . . . . . . . . . . . . . 17 1 < 2
151150a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 1 < 2)
152139, 141, 137, 149, 151xrlelttrd 13096 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘((𝑈𝐴) 𝑌)) < 2)
153134, 19, 12deg1xrcl 25963 . . . . . . . . . . . . . . . . 17 ((𝑈𝐵) ∈ (Base‘𝑃) → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
15443, 153syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ∈ ℝ*)
155 0xr 11197 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ*
156155a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℝ*)
157134, 19, 66, 35deg1sclle 25993 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
15818, 82, 157syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) ≤ 0)
159 2pos 12265 . . . . . . . . . . . . . . . . 17 0 < 2
160159a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 0 < 2)
161154, 156, 137, 158, 160xrlelttrd 13096 . . . . . . . . . . . . . . 15 (𝜑 → ((deg1𝐾)‘(𝑈𝐵)) < 2)
16219, 134, 18, 12, 13, 41, 43, 137, 152, 161deg1addlt 33538 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < 2)
163134, 19, 30, 23, 25deg1pw 26002 . . . . . . . . . . . . . . 15 ((𝐾 ∈ NzRing ∧ 2 ∈ ℕ0) → ((deg1𝐾)‘(2 𝑌)) = 2)
164147, 29, 163syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → ((deg1𝐾)‘(2 𝑌)) = 2)
165162, 164breqtrrd 5130 . . . . . . . . . . . . 13 (𝜑 → ((deg1𝐾)‘(((𝑈𝐴) 𝑌) (𝑈𝐵))) < ((deg1𝐾)‘(2 𝑌)))
16619, 134, 18, 12, 13, 33, 44, 165deg1add 25984 . . . . . . . . . . . 12 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = ((deg1𝐾)‘(2 𝑌)))
167166, 164eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((deg1𝐾)‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵)))) = 2)
168133, 167eqtrid 2776 . . . . . . . . . 10 (𝜑 → ((deg1𝐾)‘𝐺) = 2)
169168fveq2d 6844 . . . . . . . . 9 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = ((coe1𝐺)‘2))
170169, 111, 1083eqtrd 2768 . . . . . . . 8 (𝜑 → ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾))
171 eqid 2729 . . . . . . . . 9 (Monic1p𝐾) = (Monic1p𝐾)
17219, 12, 120, 134, 171, 53ismon1p 26024 . . . . . . . 8 (𝐺 ∈ (Monic1p𝐾) ↔ (𝐺 ∈ (Base‘𝑃) ∧ 𝐺 ≠ (0g𝑃) ∧ ((coe1𝐺)‘((deg1𝐾)‘𝐺)) = (1r𝐾)))
17346, 132, 170, 172syl3anbrc 1344 . . . . . . 7 (𝜑𝐺 ∈ (Monic1p𝐾))
174 eqid 2729 . . . . . . . . . . . 12 (𝐸 evalSub1 𝐹) = (𝐸 evalSub1 𝐹)
175 eqid 2729 . . . . . . . . . . . 12 (eval1𝐸) = (eval1𝐸)
176174, 61, 19, 1, 12, 175, 36, 38ressply1evl 22233 . . . . . . . . . . 11 (𝜑 → (𝐸 evalSub1 𝐹) = ((eval1𝐸) ↾ (Base‘𝑃)))
177176fveq1d 6842 . . . . . . . . . 10 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺))
17846fvresd 6860 . . . . . . . . . 10 (𝜑 → (((eval1𝐸) ↾ (Base‘𝑃))‘𝐺) = ((eval1𝐸)‘𝐺))
179177, 178eqtrd 2764 . . . . . . . . 9 (𝜑 → ((𝐸 evalSub1 𝐹)‘𝐺) = ((eval1𝐸)‘𝐺))
180179fveq1d 6842 . . . . . . . 8 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = (((eval1𝐸)‘𝐺)‘𝑋))
181 eqid 2729 . . . . . . . . 9 (Poly1𝐸) = (Poly1𝐸)
182 eqid 2729 . . . . . . . . 9 (Base‘(Poly1𝐸)) = (Base‘(Poly1𝐸))
183 rtelextdg2.6 . . . . . . . . 9 · = (.r𝐸)
184 rtelextdg2.7 . . . . . . . . 9 + = (+g𝐸)
185 rtelextdg2.8 . . . . . . . . 9 = (.g‘(mulGrp‘𝐸))
186 eqid 2729 . . . . . . . . 9 (coe1𝐺) = (coe1𝐺)
187 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘2) = ((coe1𝐺)‘2)
188 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘1) = ((coe1𝐺)‘1)
189 eqid 2729 . . . . . . . . 9 ((coe1𝐺)‘0) = ((coe1𝐺)‘0)
190 eqid 2729 . . . . . . . . . . . 12 (PwSer1𝐾) = (PwSer1𝐾)
191 eqid 2729 . . . . . . . . . . . 12 (Base‘(PwSer1𝐾)) = (Base‘(PwSer1𝐾))
192181, 1, 19, 12, 38, 190, 191, 182ressply1bas2 22088 . . . . . . . . . . 11 (𝜑 → (Base‘𝑃) = ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
19346, 192eleqtrd 2830 . . . . . . . . . 10 (𝜑𝐺 ∈ ((Base‘(PwSer1𝐾)) ∩ (Base‘(Poly1𝐸))))
194193elin2d 4164 . . . . . . . . 9 (𝜑𝐺 ∈ (Base‘(Poly1𝐸)))
1951, 3, 19, 12, 46, 38ressdeg1 33508 . . . . . . . . . 10 (𝜑 → ((deg1𝐸)‘𝐺) = ((deg1𝐾)‘𝐺))
196195, 168eqtrd 2764 . . . . . . . . 9 (𝜑 → ((deg1𝐸)‘𝐺) = 2)
197181, 175, 61, 182, 183, 184, 185, 186, 3, 187, 188, 189, 36, 194, 196, 7evl1deg2 33519 . . . . . . . 8 (𝜑 → (((eval1𝐸)‘𝐺)‘𝑋) = ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))))
198111oveq1d 7384 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = ((1r𝐸) · (2 𝑋)))
199 eqid 2729 . . . . . . . . . . . . . 14 (mulGrp‘𝐸) = (mulGrp‘𝐸)
200199, 61mgpbas 20030 . . . . . . . . . . . . 13 𝑉 = (Base‘(mulGrp‘𝐸))
201199ringmgp 20124 . . . . . . . . . . . . . 14 (𝐸 ∈ Ring → (mulGrp‘𝐸) ∈ Mnd)
202102, 201syl 17 . . . . . . . . . . . . 13 (𝜑 → (mulGrp‘𝐸) ∈ Mnd)
203200, 185, 202, 29, 7mulgnn0cld 19003 . . . . . . . . . . . 12 (𝜑 → (2 𝑋) ∈ 𝑉)
20461, 183, 103, 102, 203ringlidmd 20157 . . . . . . . . . . 11 (𝜑 → ((1r𝐸) · (2 𝑋)) = (2 𝑋))
205198, 204eqtrd 2764 . . . . . . . . . 10 (𝜑 → (((coe1𝐺)‘2) · (2 𝑋)) = (2 𝑋))
20647fveq1i 6841 . . . . . . . . . . . . 13 ((coe1𝐺)‘1) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1)
207 1nn0 12434 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
208207a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℕ0)
20919, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . . . 15 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21018, 33, 44, 208, 209syl31anc 1375 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)))
21171neii 2927 . . . . . . . . . . . . . . . . . 18 ¬ 1 = 2
212 eqeq1 2733 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → (𝑖 = 2 ↔ 1 = 2))
213212notbid 318 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 1 → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
214213adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → (¬ 𝑖 = 2 ↔ ¬ 1 = 2))
215211, 214mpbiri 258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 = 1) → ¬ 𝑖 = 2)
216215iffalsed 4495 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 1) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
21754, 216, 208, 77fvmptd 6957 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(2 𝑌))‘1) = (0g𝐾))
21819, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
21918, 41, 43, 208, 218syl31anc 1375 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)))
22019, 12, 66, 35, 34, 67coe1sclmulfv 22145 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 1 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
22118, 65, 32, 208, 220syl121anc 1377 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = (𝐴(.r𝐾)((coe1𝑌)‘1)))
222 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑖 = 1) → 𝑖 = 1)
223222iftrued 4492 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 1) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (1r𝐾))
22470, 223, 208, 57fvmptd 6957 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((coe1𝑌)‘1) = (1r𝐾))
225224oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘1)) = (𝐴(.r𝐾)(1r𝐾)))
22666, 67, 53, 18, 65ringridmd 20158 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴(.r𝐾)(1r𝐾)) = 𝐴)
227221, 225, 2263eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘1) = 𝐴)
228 0ne1 12233 . . . . . . . . . . . . . . . . . . . . . 22 0 ≠ 1
229228nesymi 2982 . . . . . . . . . . . . . . . . . . . . 21 ¬ 1 = 0
230 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 1 → (𝑖 = 0 ↔ 1 = 0))
231229, 230mtbiri 327 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 1 → ¬ 𝑖 = 0)
232231adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 1) → ¬ 𝑖 = 0)
233232iffalsed 4495 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 = 1) → if(𝑖 = 0, 𝐵, (0g𝐾)) = (0g𝐾))
23484, 233, 208, 77fvmptd 6957 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘(𝑈𝐵))‘1) = (0g𝐾))
235227, 234oveq12d 7387 . . . . . . . . . . . . . . . 16 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘1)(+g𝐾)((coe1‘(𝑈𝐵))‘1)) = (𝐴(+g𝐾)(0g𝐾)))
23666, 49, 52, 93, 65grpridd 18878 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴(+g𝐾)(0g𝐾)) = 𝐴)
237219, 235, 2363eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1) = 𝐴)
238217, 237oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → (((coe1‘(2 𝑌))‘1)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘1)) = ((0g𝐾)(+g𝐾)𝐴))
23966, 49, 52, 93, 65grplidd 18877 . . . . . . . . . . . . . 14 (𝜑 → ((0g𝐾)(+g𝐾)𝐴) = 𝐴)
240210, 238, 2393eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘1) = 𝐴)
241206, 240eqtrid 2776 . . . . . . . . . . . 12 (𝜑 → ((coe1𝐺)‘1) = 𝐴)
242241oveq1d 7384 . . . . . . . . . . 11 (𝜑 → (((coe1𝐺)‘1) · 𝑋) = (𝐴 · 𝑋))
24347fveq1i 6841 . . . . . . . . . . . 12 ((coe1𝐺)‘0) = ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0)
244 0nn0 12433 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
245244a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℕ0)
24619, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . . 14 (((𝐾 ∈ Ring ∧ (2 𝑌) ∈ (Base‘𝑃) ∧ (((𝑈𝐴) 𝑌) (𝑈𝐵)) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24718, 33, 44, 245, 246syl31anc 1375 . . . . . . . . . . . . 13 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)))
24888adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 = 0) → ¬ 𝑖 = 2)
249248iffalsed 4495 . . . . . . . . . . . . . . 15 ((𝜑𝑖 = 0) → if(𝑖 = 2, (1r𝐾), (0g𝐾)) = (0g𝐾))
25054, 249, 245, 77fvmptd 6957 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(2 𝑌))‘0) = (0g𝐾))
25119, 12, 13, 49coe1addfv 22127 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ Ring ∧ ((𝑈𝐴) 𝑌) ∈ (Base‘𝑃) ∧ (𝑈𝐵) ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25218, 41, 43, 245, 251syl31anc 1375 . . . . . . . . . . . . . . 15 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)))
25319, 12, 66, 35, 34, 67coe1sclmulfv 22145 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ (𝐴 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝑃)) ∧ 0 ∈ ℕ0) → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
25418, 65, 32, 245, 253syl121anc 1377 . . . . . . . . . . . . . . . . 17 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (𝐴(.r𝐾)((coe1𝑌)‘0)))
255228neii 2927 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 0 = 1
256 eqeq1 2733 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = 0 → (𝑖 = 1 ↔ 0 = 1))
257255, 256mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = 0 → ¬ 𝑖 = 1)
258257adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑖 = 0) → ¬ 𝑖 = 1)
259258iffalsed 4495 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 = 0) → if(𝑖 = 1, (1r𝐾), (0g𝐾)) = (0g𝐾))
26070, 259, 245, 77fvmptd 6957 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((coe1𝑌)‘0) = (0g𝐾))
261260oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴(.r𝐾)((coe1𝑌)‘0)) = (𝐴(.r𝐾)(0g𝐾)))
262254, 261, 803eqtrd 2768 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘((𝑈𝐴) 𝑌))‘0) = (0g𝐾))
26319, 35, 66ply1sclid 22150 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Ring ∧ 𝐵 ∈ (Base‘𝐾)) → 𝐵 = ((coe1‘(𝑈𝐵))‘0))
26418, 82, 263syl2anc 584 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 = ((coe1‘(𝑈𝐵))‘0))
265264eqcomd 2735 . . . . . . . . . . . . . . . 16 (𝜑 → ((coe1‘(𝑈𝐵))‘0) = 𝐵)
266262, 265oveq12d 7387 . . . . . . . . . . . . . . 15 (𝜑 → (((coe1‘((𝑈𝐴) 𝑌))‘0)(+g𝐾)((coe1‘(𝑈𝐵))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
26766, 49, 52, 93, 82grplidd 18877 . . . . . . . . . . . . . . 15 (𝜑 → ((0g𝐾)(+g𝐾)𝐵) = 𝐵)
268252, 266, 2673eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0) = 𝐵)
269250, 268oveq12d 7387 . . . . . . . . . . . . 13 (𝜑 → (((coe1‘(2 𝑌))‘0)(+g𝐾)((coe1‘(((𝑈𝐴) 𝑌) (𝑈𝐵)))‘0)) = ((0g𝐾)(+g𝐾)𝐵))
270247, 269, 2673eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → ((coe1‘((2 𝑌) (((𝑈𝐴) 𝑌) (𝑈𝐵))))‘0) = 𝐵)
271243, 270eqtrid 2776 . . . . . . . . . . 11 (𝜑 → ((coe1𝐺)‘0) = 𝐵)
272242, 271oveq12d 7387 . . . . . . . . . 10 (𝜑 → ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0)) = ((𝐴 · 𝑋) + 𝐵))
273205, 272oveq12d 7387 . . . . . . . . 9 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)))
274 rtelextdg2.14 . . . . . . . . 9 (𝜑 → ((2 𝑋) + ((𝐴 · 𝑋) + 𝐵)) = 0 )
275273, 274eqtrd 2764 . . . . . . . 8 (𝜑 → ((((coe1𝐺)‘2) · (2 𝑋)) + ((((coe1𝐺)‘1) · 𝑋) + ((coe1𝐺)‘0))) = 0 )
276180, 197, 2753eqtrd 2768 . . . . . . 7 (𝜑 → (((𝐸 evalSub1 𝐹)‘𝐺)‘𝑋) = 0 )
27710, 173, 276rspcedvdw 3588 . . . . . 6 (𝜑 → ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )
278174, 1, 61, 114, 36, 38elirng 33654 . . . . . 6 (𝜑 → (𝑋 ∈ (𝐸 IntgRing 𝐹) ↔ (𝑋𝑉 ∧ ∃𝑝 ∈ (Monic1p𝐾)(((𝐸 evalSub1 𝐹)‘𝑝)‘𝑋) = 0 )))
2797, 277, 278mpbir2and 713 . . . . 5 (𝜑𝑋 ∈ (𝐸 IntgRing 𝐹))
2801, 2, 3, 4, 5, 6, 279algextdeg 33688 . . . 4 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)))
2811fveq2i 6843 . . . . . . 7 (Poly1𝐾) = (Poly1‘(𝐸s 𝐹))
28219, 281eqtri 2752 . . . . . 6 𝑃 = (Poly1‘(𝐸s 𝐹))
283 eqid 2729 . . . . . 6 {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 } = {𝑞 ∈ dom (𝐸 evalSub1 𝐹) ∣ (((𝐸 evalSub1 𝐹)‘𝑞)‘𝑋) = 0 }
284 eqid 2729 . . . . . 6 (RSpan‘𝑃) = (RSpan‘𝑃)
285 eqid 2729 . . . . . 6 (idlGen1p‘(𝐸s 𝐹)) = (idlGen1p‘(𝐸s 𝐹))
286174, 282, 61, 5, 6, 7, 114, 283, 284, 285, 4minplycl 33669 . . . . 5 (𝜑 → ((𝐸 minPoly 𝐹)‘𝑋) ∈ (Base‘𝑃))
2871, 3, 19, 12, 286, 38ressdeg1 33508 . . . 4 (𝜑 → ((deg1𝐸)‘((𝐸 minPoly 𝐹)‘𝑋)) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
288280, 287eqtrd 2764 . . 3 (𝜑 → (𝐿[:]𝐾) = ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)))
2891fveq2i 6843 . . . 4 (deg1𝐾) = (deg1‘(𝐸s 𝐹))
290174, 282, 61, 5, 6, 7, 114, 4, 289, 120, 12, 276, 46, 132minplymindeg 33671 . . 3 (𝜑 → ((deg1𝐾)‘((𝐸 minPoly 𝐹)‘𝑋)) ≤ ((deg1𝐾)‘𝐺))
291288, 290eqbrtrd 5124 . 2 (𝜑 → (𝐿[:]𝐾) ≤ ((deg1𝐾)‘𝐺))
292291, 168breqtrd 5128 1 (𝜑 → (𝐿[:]𝐾) ≤ 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3402  Vcvv 3444  cun 3909  cin 3910  wss 3911  ifcif 4484  {csn 4585   class class class wbr 5102  cmpt 5183  dom cdm 5631  cres 5633  cfv 6499  (class class class)co 7369  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  cle 11185  2c2 12217  0cn0 12418  Basecbs 17155  s cress 17176  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  Mndcmnd 18637  Grpcgrp 18841  .gcmg 18975  SubGrpcsubg 19028  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119  NzRingcnzr 20397  SubRingcsubrg 20454  DivRingcdr 20614  Fieldcfield 20615  SubDRingcsdrg 20671  RSpancrsp 21093  algSccascl 21737  PwSer1cps1 22035  var1cv1 22036  Poly1cpl1 22037  coe1cco1 22038   evalSub1 ces1 22176  eval1ce1 22177  deg1cdg1 25935  Monic1pcmn1 26007  idlGen1pcig1p 26011   fldGen cfldgen 33233  [:]cextdg 33609   IntgRing cirng 33651   minPoly cminply 33662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-rpss 7679  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-r1 9693  df-rank 9694  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ocomp 17217  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-imas 17447  df-qus 17448  df-mre 17523  df-mrc 17524  df-mri 17525  df-acs 17526  df-proset 18231  df-drs 18232  df-poset 18250  df-ipo 18463  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-nsg 19032  df-eqg 19033  df-ghm 19121  df-gim 19167  df-cntz 19225  df-oppg 19254  df-lsm 19542  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-irred 20244  df-invr 20273  df-dvr 20286  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-drng 20616  df-field 20617  df-sdrg 20672  df-lmod 20744  df-lss 20814  df-lsp 20854  df-lmhm 20905  df-lmim 20906  df-lmic 20907  df-lbs 20958  df-lvec 20986  df-sra 21056  df-rgmod 21057  df-lidl 21094  df-rsp 21095  df-2idl 21136  df-lpidl 21208  df-lpir 21209  df-pid 21223  df-cnfld 21241  df-dsmm 21617  df-frlm 21632  df-uvc 21668  df-lindf 21691  df-linds 21692  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evls1 22178  df-evl1 22179  df-mdeg 25936  df-deg1 25937  df-mon1 26012  df-uc1p 26013  df-q1p 26014  df-r1p 26015  df-ig1p 26016  df-fldgen 33234  df-mxidl 33404  df-dim 33568  df-fldext 33610  df-extdg 33611  df-irng 33652  df-minply 33663
This theorem is referenced by:  rtelextdg2  33690
  Copyright terms: Public domain W3C validator