Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsmulg | Structured version Visualization version GIF version |
Description: Value of a group multiple in a structure power. (Contributed by Mario Carneiro, 15-Jun-2015.) |
Ref | Expression |
---|---|
pwsmulg.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsmulg.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsmulg.s | ⊢ ∙ = (.g‘𝑌) |
pwsmulg.t | ⊢ · = (.g‘𝑅) |
Ref | Expression |
---|---|
pwsmulg | ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑅 ∈ Mnd) | |
2 | simplr 766 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝐼 ∈ 𝑉) | |
3 | simpr3 1195 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝐴 ∈ 𝐼) | |
4 | pwsmulg.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
6 | 4, 5 | pwspjmhm 18565 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
7 | 1, 2, 3, 6 | syl3anc 1370 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
8 | simpr1 1193 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑁 ∈ ℕ0) | |
9 | simpr2 1194 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑋 ∈ 𝐵) | |
10 | pwsmulg.s | . . . 4 ⊢ ∙ = (.g‘𝑌) | |
11 | pwsmulg.t | . . . 4 ⊢ · = (.g‘𝑅) | |
12 | 5, 10, 11 | mhmmulg 18840 | . . 3 ⊢ (((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
13 | 7, 8, 9, 12 | syl3anc 1370 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋))) |
14 | 4 | pwsmnd 18517 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Mnd) |
15 | 14 | adantr 481 | . . . 4 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → 𝑌 ∈ Mnd) |
16 | 5, 10 | mulgnn0cl 18816 | . . . 4 ⊢ ((𝑌 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
17 | 15, 8, 9, 16 | syl3anc 1370 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑁 ∙ 𝑋) ∈ 𝐵) |
18 | fveq1 6824 | . . . 4 ⊢ (𝑥 = (𝑁 ∙ 𝑋) → (𝑥‘𝐴) = ((𝑁 ∙ 𝑋)‘𝐴)) | |
19 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) | |
20 | fvex 6838 | . . . 4 ⊢ ((𝑁 ∙ 𝑋)‘𝐴) ∈ V | |
21 | 18, 19, 20 | fvmpt 6931 | . . 3 ⊢ ((𝑁 ∙ 𝑋) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
22 | 17, 21 | syl 17 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘(𝑁 ∙ 𝑋)) = ((𝑁 ∙ 𝑋)‘𝐴)) |
23 | fveq1 6824 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥‘𝐴) = (𝑋‘𝐴)) | |
24 | fvex 6838 | . . . . 5 ⊢ (𝑋‘𝐴) ∈ V | |
25 | 23, 19, 24 | fvmpt 6931 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
26 | 9, 25 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋) = (𝑋‘𝐴)) |
27 | 26 | oveq2d 7353 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → (𝑁 · ((𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴))‘𝑋)) = (𝑁 · (𝑋‘𝐴))) |
28 | 13, 22, 27 | 3eqtr3d 2784 | 1 ⊢ (((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) ∧ (𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐼)) → ((𝑁 ∙ 𝑋)‘𝐴) = (𝑁 · (𝑋‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 ℕ0cn0 12334 Basecbs 17009 ↑s cpws 17254 Mndcmnd 18482 MndHom cmhm 18525 .gcmg 18796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-sup 9299 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-seq 13823 df-struct 16945 df-slot 16980 df-ndx 16992 df-base 17010 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-0g 17249 df-prds 17255 df-pws 17257 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-mhm 18527 df-mulg 18797 |
This theorem is referenced by: evl1expd 21617 |
Copyright terms: Public domain | W3C validator |