| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl1 | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl1.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl1.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| usgrexmpl1 | ⊢ 𝐺 ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl1.v | . . 3 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl1.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 3 | 1, 2 | usgrexmpl1lem 47914 | . 2 ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
| 4 | usgrexmpl1.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 4 | eleq1i 2824 | . . 3 ⊢ (𝐺 ∈ USGraph ↔ 〈𝑉, 𝐸〉 ∈ USGraph) |
| 6 | 1 | ovexi 7446 | . . . 4 ⊢ 𝑉 ∈ V |
| 7 | s7cli 14905 | . . . . 5 ⊢ 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ∈ Word V | |
| 8 | 2, 7 | eqeltri 2829 | . . . 4 ⊢ 𝐸 ∈ Word V |
| 9 | isusgrop 29106 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 11 | 5, 10 | bitri 275 | . 2 ⊢ (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 12 | 3, 11 | mpbir 231 | 1 ⊢ 𝐺 ∈ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 𝒫 cpw 4580 {cpr 4608 〈cop 4612 dom cdm 5665 –1-1→wf1 6537 ‘cfv 6540 (class class class)co 7412 0cc0 11136 1c1 11137 2c2 12302 3c3 12303 4c4 12304 5c5 12305 ...cfz 13528 ♯chash 14350 Word cword 14533 〈“cs7 14866 USGraphcusgr 29093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-n0 12509 df-xnn0 12582 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 df-hash 14351 df-word 14534 df-concat 14590 df-s1 14615 df-s2 14868 df-s3 14869 df-s4 14870 df-s5 14871 df-s6 14872 df-s7 14873 df-vtx 28942 df-iedg 28943 df-usgr 29095 |
| This theorem is referenced by: usgrexmpl12ngric 47931 usgrexmpl12ngrlic 47932 |
| Copyright terms: Public domain | W3C validator |