| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl1 | Structured version Visualization version GIF version | ||
| Description: 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl1.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl1.e | ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| Ref | Expression |
|---|---|
| usgrexmpl1 | ⊢ 𝐺 ∈ USGraph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl1.v | . . 3 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl1.e | . . 3 ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 3 | 1, 2 | usgrexmpl1lem 48006 | . 2 ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} |
| 4 | usgrexmpl1.g | . . . 4 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 5 | 4 | eleq1i 2819 | . . 3 ⊢ (𝐺 ∈ USGraph ↔ 〈𝑉, 𝐸〉 ∈ USGraph) |
| 6 | 1 | ovexi 7387 | . . . 4 ⊢ 𝑉 ∈ V |
| 7 | s7cli 14810 | . . . . 5 ⊢ 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ∈ Word V | |
| 8 | 2, 7 | eqeltri 2824 | . . . 4 ⊢ 𝐸 ∈ Word V |
| 9 | isusgrop 29125 | . . . 4 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ Word V) → (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2})) | |
| 10 | 6, 8, 9 | mp2an 692 | . . 3 ⊢ (〈𝑉, 𝐸〉 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 11 | 5, 10 | bitri 275 | . 2 ⊢ (𝐺 ∈ USGraph ↔ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2}) |
| 12 | 3, 11 | mpbir 231 | 1 ⊢ 𝐺 ∈ USGraph |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3396 Vcvv 3438 𝒫 cpw 4553 {cpr 4581 〈cop 4585 dom cdm 5623 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 2c2 12201 3c3 12202 4c4 12203 5c5 12204 ...cfz 13428 ♯chash 14255 Word cword 14438 〈“cs7 14771 USGraphcusgr 29112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-s4 14775 df-s5 14776 df-s6 14777 df-s7 14778 df-vtx 28961 df-iedg 28962 df-usgr 29114 |
| This theorem is referenced by: usgrexmpl12ngric 48023 usgrexmpl12ngrlic 48024 |
| Copyright terms: Public domain | W3C validator |