MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fsupp Structured version   Visualization version   GIF version

Theorem coe1fsupp 21737
Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
coe1fvalcl.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
coe1fsupp (𝐹𝐵𝐴 ∈ {𝑔 ∈ (𝐾m0) ∣ 𝑔 finSupp 0 })
Distinct variable groups:   𝐴,𝑔   𝑔,𝐾   0 ,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑔)   𝑅(𝑔)   𝐹(𝑔)

Proof of Theorem coe1fsupp
StepHypRef Expression
1 breq1 5151 . 2 (𝑔 = 𝐴 → (𝑔 finSupp 0𝐴 finSupp 0 ))
2 coe1sfi.a . . . 4 𝐴 = (coe1𝐹)
3 coe1sfi.b . . . 4 𝐵 = (Base‘𝑃)
4 coe1sfi.p . . . 4 𝑃 = (Poly1𝑅)
5 coe1fvalcl.k . . . 4 𝐾 = (Base‘𝑅)
62, 3, 4, 5coe1f 21734 . . 3 (𝐹𝐵𝐴:ℕ0𝐾)
75fvexi 6905 . . . . 5 𝐾 ∈ V
8 nn0ex 12477 . . . . 5 0 ∈ V
97, 8pm3.2i 471 . . . 4 (𝐾 ∈ V ∧ ℕ0 ∈ V)
10 elmapg 8832 . . . 4 ((𝐾 ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ (𝐾m0) ↔ 𝐴:ℕ0𝐾))
119, 10mp1i 13 . . 3 (𝐹𝐵 → (𝐴 ∈ (𝐾m0) ↔ 𝐴:ℕ0𝐾))
126, 11mpbird 256 . 2 (𝐹𝐵𝐴 ∈ (𝐾m0))
13 coe1sfi.z . . 3 0 = (0g𝑅)
142, 3, 4, 13coe1sfi 21736 . 2 (𝐹𝐵𝐴 finSupp 0 )
151, 12, 14elrabd 3685 1 (𝐹𝐵𝐴 ∈ {𝑔 ∈ (𝐾m0) ∣ 𝑔 finSupp 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474   class class class wbr 5148  wf 6539  cfv 6543  (class class class)co 7408  m cmap 8819   finSupp cfsupp 9360  0cn0 12471  Basecbs 17143  0gc0g 17384  Poly1cpl1 21700  coe1cco1 21701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-tset 17215  df-ple 17216  df-psr 21461  df-mpl 21463  df-opsr 21465  df-psr1 21703  df-ply1 21705  df-coe1 21706
This theorem is referenced by:  mptcoe1fsupp  21738  coe1ae0  21739  pmatcoe1fsupp  22202  mptcoe1matfsupp  22303  mp2pm2mplem4  22310
  Copyright terms: Public domain W3C validator