MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1fsupp Structured version   Visualization version   GIF version

Theorem coe1fsupp 22106
Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
coe1fvalcl.k 𝐾 = (Base‘𝑅)
Assertion
Ref Expression
coe1fsupp (𝐹𝐵𝐴 ∈ {𝑔 ∈ (𝐾m0) ∣ 𝑔 finSupp 0 })
Distinct variable groups:   𝐴,𝑔   𝑔,𝐾   0 ,𝑔
Allowed substitution hints:   𝐵(𝑔)   𝑃(𝑔)   𝑅(𝑔)   𝐹(𝑔)

Proof of Theorem coe1fsupp
StepHypRef Expression
1 breq1 5113 . 2 (𝑔 = 𝐴 → (𝑔 finSupp 0𝐴 finSupp 0 ))
2 coe1sfi.a . . . 4 𝐴 = (coe1𝐹)
3 coe1sfi.b . . . 4 𝐵 = (Base‘𝑃)
4 coe1sfi.p . . . 4 𝑃 = (Poly1𝑅)
5 coe1fvalcl.k . . . 4 𝐾 = (Base‘𝑅)
62, 3, 4, 5coe1f 22103 . . 3 (𝐹𝐵𝐴:ℕ0𝐾)
75fvexi 6875 . . . . 5 𝐾 ∈ V
8 nn0ex 12455 . . . . 5 0 ∈ V
97, 8pm3.2i 470 . . . 4 (𝐾 ∈ V ∧ ℕ0 ∈ V)
10 elmapg 8815 . . . 4 ((𝐾 ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ (𝐾m0) ↔ 𝐴:ℕ0𝐾))
119, 10mp1i 13 . . 3 (𝐹𝐵 → (𝐴 ∈ (𝐾m0) ↔ 𝐴:ℕ0𝐾))
126, 11mpbird 257 . 2 (𝐹𝐵𝐴 ∈ (𝐾m0))
13 coe1sfi.z . . 3 0 = (0g𝑅)
142, 3, 4, 13coe1sfi 22105 . 2 (𝐹𝐵𝐴 finSupp 0 )
151, 12, 14elrabd 3664 1 (𝐹𝐵𝐴 ∈ {𝑔 ∈ (𝐾m0) ∣ 𝑔 finSupp 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802   finSupp cfsupp 9319  0cn0 12449  Basecbs 17186  0gc0g 17409  Poly1cpl1 22068  coe1cco1 22069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-tset 17246  df-ple 17247  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-coe1 22074
This theorem is referenced by:  mptcoe1fsupp  22107  coe1ae0  22108  pmatcoe1fsupp  22595  mptcoe1matfsupp  22696  mp2pm2mplem4  22703
  Copyright terms: Public domain W3C validator