![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1fsupp | Structured version Visualization version GIF version |
Description: The coefficient vector of a univariate polynomial is a finitely supported mapping from the nonnegative integers to the elements of the coefficient class/ring for the polynomial. (Contributed by AV, 3-Oct-2019.) |
Ref | Expression |
---|---|
coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
coe1fvalcl.k | ⊢ 𝐾 = (Base‘𝑅) |
Ref | Expression |
---|---|
coe1fsupp | ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑔 ∈ (𝐾 ↑m ℕ0) ∣ 𝑔 finSupp 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5144 | . 2 ⊢ (𝑔 = 𝐴 → (𝑔 finSupp 0 ↔ 𝐴 finSupp 0 )) | |
2 | coe1sfi.a | . . . 4 ⊢ 𝐴 = (coe1‘𝐹) | |
3 | coe1sfi.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
4 | coe1sfi.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | coe1fvalcl.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
6 | 2, 3, 4, 5 | coe1f 22137 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐴:ℕ0⟶𝐾) |
7 | 5 | fvexi 6904 | . . . . 5 ⊢ 𝐾 ∈ V |
8 | nn0ex 12506 | . . . . 5 ⊢ ℕ0 ∈ V | |
9 | 7, 8 | pm3.2i 469 | . . . 4 ⊢ (𝐾 ∈ V ∧ ℕ0 ∈ V) |
10 | elmapg 8854 | . . . 4 ⊢ ((𝐾 ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ (𝐾 ↑m ℕ0) ↔ 𝐴:ℕ0⟶𝐾)) | |
11 | 9, 10 | mp1i 13 | . . 3 ⊢ (𝐹 ∈ 𝐵 → (𝐴 ∈ (𝐾 ↑m ℕ0) ↔ 𝐴:ℕ0⟶𝐾)) |
12 | 6, 11 | mpbird 256 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ (𝐾 ↑m ℕ0)) |
13 | coe1sfi.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
14 | 2, 3, 4, 13 | coe1sfi 22139 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
15 | 1, 12, 14 | elrabd 3676 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 ∈ {𝑔 ∈ (𝐾 ↑m ℕ0) ∣ 𝑔 finSupp 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3419 Vcvv 3463 class class class wbr 5141 ⟶wf 6537 ‘cfv 6541 (class class class)co 7414 ↑m cmap 8841 finSupp cfsupp 9383 ℕ0cn0 12500 Basecbs 17177 0gc0g 17418 Poly1cpl1 22102 coe1cco1 22103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-tset 17249 df-ple 17250 df-psr 21844 df-mpl 21846 df-opsr 21848 df-psr1 22105 df-ply1 22107 df-coe1 22108 |
This theorem is referenced by: mptcoe1fsupp 22141 coe1ae0 22142 pmatcoe1fsupp 22619 mptcoe1matfsupp 22720 mp2pm2mplem4 22727 |
Copyright terms: Public domain | W3C validator |