| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) | 
| 2 |  | fidomncyc.b | . . . 4
⊢ 𝐵 = (Base‘𝑅) | 
| 3 | 1, 2 | mgpbas 20143 | . . 3
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) | 
| 4 |  | fidomncyc.e | . . 3
⊢  ↑ =
(.g‘(mulGrp‘𝑅)) | 
| 5 |  | fidomncyc.r | . . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) | 
| 6 |  | domnring 20708 | . . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | 
| 7 | 5, 6 | syl 17 | . . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 8 | 1 | ringmgp 20237 | . . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) | 
| 9 | 7, 8 | syl 17 | . . . 4
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) | 
| 10 |  | mndmgm 18755 | . . . 4
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) | 
| 11 | 9, 10 | syl 17 | . . 3
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mgm) | 
| 12 |  | fidomncyc.f | . . 3
⊢ (𝜑 → 𝐵 ∈ Fin) | 
| 13 |  | fidomncyc.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ { 0 })) | 
| 14 | 13 | eldifad 3962 | . . 3
⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 15 | 3, 4, 11, 12, 14 | fimgmcyc 42549 | . 2
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) | 
| 16 |  | simplrr 777 | . . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑝 ∈ ℕ) | 
| 17 |  | fidomncyc.0 | . . . . . 6
⊢  0 =
(0g‘𝑅) | 
| 18 |  | eqid 2736 | . . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 19 | 5 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Domn) | 
| 20 |  | nnnn0 12535 | . . . . . . . . 9
⊢ (𝑜 ∈ ℕ → 𝑜 ∈
ℕ0) | 
| 21 | 20 | ad2antrl 728 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑜 ∈ ℕ0) | 
| 22 | 13 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ (𝐵 ∖ { 0 })) | 
| 23 | 2, 17, 4, 19, 21, 22 | domnexpgn0cl 42538 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) | 
| 24 | 23 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) | 
| 25 | 11 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (mulGrp‘𝑅) ∈ Mgm) | 
| 26 |  | simprr 772 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑝 ∈ ℕ) | 
| 27 | 14 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ 𝐵) | 
| 28 | 3, 4 | mulgnncl 19108 | . . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Mgm ∧ 𝑝 ∈
ℕ ∧ 𝐴 ∈
𝐵) → (𝑝 ↑ 𝐴) ∈ 𝐵) | 
| 29 | 25, 26, 27, 28 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑝 ↑ 𝐴) ∈ 𝐵) | 
| 30 | 29 | adantr 480 | . . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) ∈ 𝐵) | 
| 31 |  | fidomncyc.1 | . . . . . . . . 9
⊢  1 =
(1r‘𝑅) | 
| 32 | 2, 31 | ringidcl 20263 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) | 
| 33 | 7, 32 | syl 17 | . . . . . . 7
⊢ (𝜑 → 1 ∈ 𝐵) | 
| 34 | 33 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 1 ∈ 𝐵) | 
| 35 | 5 | ad2antrr 726 | . . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑅 ∈ Domn) | 
| 36 | 7 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Ring) | 
| 37 | 23 | eldifad 3962 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ 𝐵) | 
| 38 | 2, 18, 31, 36, 37 | ringridmd 20271 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) | 
| 39 | 38 | adantr 480 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) | 
| 40 |  | simpr 484 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) | 
| 41 |  | mndsgrp 18754 | . . . . . . . . . 10
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Smgrp) | 
| 42 | 9, 41 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Smgrp) | 
| 43 | 42 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (mulGrp‘𝑅) ∈ Smgrp) | 
| 44 |  | simplrl 776 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑜 ∈ ℕ) | 
| 45 | 27 | adantr 480 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝐴 ∈ 𝐵) | 
| 46 | 1, 18 | mgpplusg 20142 | . . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) | 
| 47 | 3, 4, 46 | mulgnndir 19122 | . . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Smgrp ∧ (𝑜
∈ ℕ ∧ 𝑝
∈ ℕ ∧ 𝐴
∈ 𝐵)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) | 
| 48 | 43, 44, 16, 45, 47 | syl13anc 1373 | . . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) | 
| 49 | 39, 40, 48 | 3eqtrrd 2781 | . . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴)) = ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 )) | 
| 50 | 2, 17, 18, 24, 30, 34, 35, 49 | domnlcan 20722 | . . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) = 1 ) | 
| 51 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑛 = 𝑝 → (𝑛 ↑ 𝐴) = (𝑝 ↑ 𝐴)) | 
| 52 | 51 | eqeq1d 2738 | . . . . . 6
⊢ (𝑛 = 𝑝 → ((𝑛 ↑ 𝐴) = 1 ↔ (𝑝 ↑ 𝐴) = 1 )) | 
| 53 | 52 | rspcev 3621 | . . . . 5
⊢ ((𝑝 ∈ ℕ ∧ (𝑝 ↑ 𝐴) = 1 ) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) | 
| 54 | 16, 50, 53 | syl2anc 584 | . . . 4
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) | 
| 55 | 54 | ex 412 | . . 3
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) | 
| 56 | 55 | rexlimdvva 3212 | . 2
⊢ (𝜑 → (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) | 
| 57 | 15, 56 | mpd 15 | 1
⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |