| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 2 | | fidomncyc.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 3 | 1, 2 | mgpbas 20110 |
. . 3
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
| 4 | | fidomncyc.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
| 5 | | fidomncyc.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 6 | | domnring 20672 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | 1 | ringmgp 20204 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 10 | | mndmgm 18724 |
. . . 4
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) |
| 11 | 9, 10 | syl 17 |
. . 3
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mgm) |
| 12 | | fidomncyc.f |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 13 | | fidomncyc.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ { 0 })) |
| 14 | 13 | eldifad 3943 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 15 | 3, 4, 11, 12, 14 | fimgmcyc 42524 |
. 2
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) |
| 16 | | simplrr 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑝 ∈ ℕ) |
| 17 | | fidomncyc.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
| 18 | | eqid 2736 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 19 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Domn) |
| 20 | | nnnn0 12513 |
. . . . . . . . 9
⊢ (𝑜 ∈ ℕ → 𝑜 ∈
ℕ0) |
| 21 | 20 | ad2antrl 728 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑜 ∈ ℕ0) |
| 22 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ (𝐵 ∖ { 0 })) |
| 23 | 2, 17, 4, 19, 21, 22 | domnexpgn0cl 42513 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) |
| 24 | 23 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) |
| 25 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (mulGrp‘𝑅) ∈ Mgm) |
| 26 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑝 ∈ ℕ) |
| 27 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ 𝐵) |
| 28 | 3, 4 | mulgnncl 19077 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Mgm ∧ 𝑝 ∈
ℕ ∧ 𝐴 ∈
𝐵) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
| 29 | 25, 26, 27, 28 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
| 31 | | fidomncyc.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 32 | 2, 31 | ringidcl 20230 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
| 33 | 7, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ 𝐵) |
| 34 | 33 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 1 ∈ 𝐵) |
| 35 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑅 ∈ Domn) |
| 36 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Ring) |
| 37 | 23 | eldifad 3943 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ 𝐵) |
| 38 | 2, 18, 31, 36, 37 | ringridmd 20238 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) |
| 39 | 38 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) |
| 40 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) |
| 41 | | mndsgrp 18723 |
. . . . . . . . . 10
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Smgrp) |
| 42 | 9, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Smgrp) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (mulGrp‘𝑅) ∈ Smgrp) |
| 44 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑜 ∈ ℕ) |
| 45 | 27 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝐴 ∈ 𝐵) |
| 46 | 1, 18 | mgpplusg 20109 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 47 | 3, 4, 46 | mulgnndir 19091 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Smgrp ∧ (𝑜
∈ ℕ ∧ 𝑝
∈ ℕ ∧ 𝐴
∈ 𝐵)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) |
| 48 | 43, 44, 16, 45, 47 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) |
| 49 | 39, 40, 48 | 3eqtrrd 2776 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴)) = ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 )) |
| 50 | 2, 17, 18, 24, 30, 34, 35, 49 | domnlcan 20686 |
. . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) = 1 ) |
| 51 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑛 = 𝑝 → (𝑛 ↑ 𝐴) = (𝑝 ↑ 𝐴)) |
| 52 | 51 | eqeq1d 2738 |
. . . . . 6
⊢ (𝑛 = 𝑝 → ((𝑛 ↑ 𝐴) = 1 ↔ (𝑝 ↑ 𝐴) = 1 )) |
| 53 | 52 | rspcev 3606 |
. . . . 5
⊢ ((𝑝 ∈ ℕ ∧ (𝑝 ↑ 𝐴) = 1 ) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |
| 54 | 16, 50, 53 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |
| 55 | 54 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) |
| 56 | 55 | rexlimdvva 3202 |
. 2
⊢ (𝜑 → (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) |
| 57 | 15, 56 | mpd 15 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |