Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fidomncyc Structured version   Visualization version   GIF version

Theorem fidomncyc 42490
Description: Version of odcl2 19607 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one (1) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fidomncyc.b 𝐵 = (Base‘𝑅)
fidomncyc.0 0 = (0g𝑅)
fidomncyc.1 1 = (1r𝑅)
fidomncyc.e = (.g‘(mulGrp‘𝑅))
fidomncyc.r (𝜑𝑅 ∈ Domn)
fidomncyc.f (𝜑𝐵 ∈ Fin)
fidomncyc.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
Assertion
Ref Expression
fidomncyc (𝜑 → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
Distinct variable groups:   1 ,𝑛   𝐴,𝑛   ,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝑅(𝑛)   0 (𝑛)

Proof of Theorem fidomncyc
Dummy variables 𝑜 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 fidomncyc.b . . . 4 𝐵 = (Base‘𝑅)
31, 2mgpbas 20167 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
4 fidomncyc.e . . 3 = (.g‘(mulGrp‘𝑅))
5 fidomncyc.r . . . . . 6 (𝜑𝑅 ∈ Domn)
6 domnring 20729 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
75, 6syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
81ringmgp 20266 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
97, 8syl 17 . . . 4 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
10 mndmgm 18779 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
119, 10syl 17 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mgm)
12 fidomncyc.f . . 3 (𝜑𝐵 ∈ Fin)
13 fidomncyc.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
1413eldifad 3988 . . 3 (𝜑𝐴𝐵)
153, 4, 11, 12, 14fimgmcyc 42489 . 2 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴))
16 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑝 ∈ ℕ)
17 fidomncyc.0 . . . . . 6 0 = (0g𝑅)
18 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
195adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Domn)
20 nnnn0 12560 . . . . . . . . 9 (𝑜 ∈ ℕ → 𝑜 ∈ ℕ0)
2120ad2antrl 727 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑜 ∈ ℕ0)
2213adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ (𝐵 ∖ { 0 }))
232, 17, 4, 19, 21, 22domnexpgn0cl 42478 . . . . . . 7 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 𝐴) ∈ (𝐵 ∖ { 0 }))
2423adantr 480 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑜 𝐴) ∈ (𝐵 ∖ { 0 }))
2511adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (mulGrp‘𝑅) ∈ Mgm)
26 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑝 ∈ ℕ)
2714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴𝐵)
283, 4mulgnncl 19129 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵) → (𝑝 𝐴) ∈ 𝐵)
2925, 26, 27, 28syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑝 𝐴) ∈ 𝐵)
3029adantr 480 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑝 𝐴) ∈ 𝐵)
31 fidomncyc.1 . . . . . . . . 9 1 = (1r𝑅)
322, 31ringidcl 20289 . . . . . . . 8 (𝑅 ∈ Ring → 1𝐵)
337, 32syl 17 . . . . . . 7 (𝜑1𝐵)
3433ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 1𝐵)
355ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑅 ∈ Domn)
367adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Ring)
3723eldifad 3988 . . . . . . . . 9 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 𝐴) ∈ 𝐵)
382, 18, 31, 36, 37ringridmd 20296 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 𝐴)(.r𝑅) 1 ) = (𝑜 𝐴))
3938adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 𝐴)(.r𝑅) 1 ) = (𝑜 𝐴))
40 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴))
41 mndsgrp 18778 . . . . . . . . . 10 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Smgrp)
429, 41syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Smgrp)
4342ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (mulGrp‘𝑅) ∈ Smgrp)
44 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑜 ∈ ℕ)
4527adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝐴𝐵)
461, 18mgpplusg 20165 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
473, 4, 46mulgnndir 19143 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵)) → ((𝑜 + 𝑝) 𝐴) = ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)))
4843, 44, 16, 45, 47syl13anc 1372 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 + 𝑝) 𝐴) = ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)))
4939, 40, 483eqtrrd 2785 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)) = ((𝑜 𝐴)(.r𝑅) 1 ))
502, 17, 18, 24, 30, 34, 35, 49domnlcan 20743 . . . . 5 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑝 𝐴) = 1 )
51 oveq1 7455 . . . . . . 7 (𝑛 = 𝑝 → (𝑛 𝐴) = (𝑝 𝐴))
5251eqeq1d 2742 . . . . . 6 (𝑛 = 𝑝 → ((𝑛 𝐴) = 1 ↔ (𝑝 𝐴) = 1 ))
5352rspcev 3635 . . . . 5 ((𝑝 ∈ ℕ ∧ (𝑝 𝐴) = 1 ) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
5416, 50, 53syl2anc 583 . . . 4 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
5554ex 412 . . 3 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 ))
5655rexlimdvva 3219 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 ))
5715, 56mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  Fincfn 9003   + caddc 11187  cn 12293  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499  Mgmcmgm 18676  Smgrpcsgrp 18756  Mndcmnd 18772  .gcmg 19107  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  Domncdomn 20714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-nzr 20539  df-domn 20717
This theorem is referenced by:  fiabv  42491
  Copyright terms: Public domain W3C validator