Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fidomncyc Structured version   Visualization version   GIF version

Theorem fidomncyc 42523
Description: Version of odcl2 19495 for multiplicative groups of finite domains (that is, a finite monoid where nonzero elements are cancellable): one (1) is a multiple of any nonzero element. (Contributed by SN, 3-Jul-2025.)
Hypotheses
Ref Expression
fidomncyc.b 𝐵 = (Base‘𝑅)
fidomncyc.0 0 = (0g𝑅)
fidomncyc.1 1 = (1r𝑅)
fidomncyc.e = (.g‘(mulGrp‘𝑅))
fidomncyc.r (𝜑𝑅 ∈ Domn)
fidomncyc.f (𝜑𝐵 ∈ Fin)
fidomncyc.a (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
Assertion
Ref Expression
fidomncyc (𝜑 → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
Distinct variable groups:   1 ,𝑛   𝐴,𝑛   ,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐵(𝑛)   𝑅(𝑛)   0 (𝑛)

Proof of Theorem fidomncyc
Dummy variables 𝑜 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 fidomncyc.b . . . 4 𝐵 = (Base‘𝑅)
31, 2mgpbas 20054 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
4 fidomncyc.e . . 3 = (.g‘(mulGrp‘𝑅))
5 fidomncyc.r . . . . . 6 (𝜑𝑅 ∈ Domn)
6 domnring 20616 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
75, 6syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
81ringmgp 20148 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
97, 8syl 17 . . . 4 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
10 mndmgm 18668 . . . 4 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Mgm)
119, 10syl 17 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mgm)
12 fidomncyc.f . . 3 (𝜑𝐵 ∈ Fin)
13 fidomncyc.a . . . 4 (𝜑𝐴 ∈ (𝐵 ∖ { 0 }))
1413eldifad 3926 . . 3 (𝜑𝐴𝐵)
153, 4, 11, 12, 14fimgmcyc 42522 . 2 (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴))
16 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑝 ∈ ℕ)
17 fidomncyc.0 . . . . . 6 0 = (0g𝑅)
18 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
195adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Domn)
20 nnnn0 12449 . . . . . . . . 9 (𝑜 ∈ ℕ → 𝑜 ∈ ℕ0)
2120ad2antrl 728 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑜 ∈ ℕ0)
2213adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ (𝐵 ∖ { 0 }))
232, 17, 4, 19, 21, 22domnexpgn0cl 42511 . . . . . . 7 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 𝐴) ∈ (𝐵 ∖ { 0 }))
2423adantr 480 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑜 𝐴) ∈ (𝐵 ∖ { 0 }))
2511adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (mulGrp‘𝑅) ∈ Mgm)
26 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑝 ∈ ℕ)
2714adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴𝐵)
283, 4mulgnncl 19021 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Mgm ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵) → (𝑝 𝐴) ∈ 𝐵)
2925, 26, 27, 28syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑝 𝐴) ∈ 𝐵)
3029adantr 480 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑝 𝐴) ∈ 𝐵)
31 fidomncyc.1 . . . . . . . . 9 1 = (1r𝑅)
322, 31ringidcl 20174 . . . . . . . 8 (𝑅 ∈ Ring → 1𝐵)
337, 32syl 17 . . . . . . 7 (𝜑1𝐵)
3433ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 1𝐵)
355ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑅 ∈ Domn)
367adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Ring)
3723eldifad 3926 . . . . . . . . 9 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 𝐴) ∈ 𝐵)
382, 18, 31, 36, 37ringridmd 20182 . . . . . . . 8 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 𝐴)(.r𝑅) 1 ) = (𝑜 𝐴))
3938adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 𝐴)(.r𝑅) 1 ) = (𝑜 𝐴))
40 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴))
41 mndsgrp 18667 . . . . . . . . . 10 ((mulGrp‘𝑅) ∈ Mnd → (mulGrp‘𝑅) ∈ Smgrp)
429, 41syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑅) ∈ Smgrp)
4342ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (mulGrp‘𝑅) ∈ Smgrp)
44 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝑜 ∈ ℕ)
4527adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → 𝐴𝐵)
461, 18mgpplusg 20053 . . . . . . . . 9 (.r𝑅) = (+g‘(mulGrp‘𝑅))
473, 4, 46mulgnndir 19035 . . . . . . . 8 (((mulGrp‘𝑅) ∈ Smgrp ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝐴𝐵)) → ((𝑜 + 𝑝) 𝐴) = ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)))
4843, 44, 16, 45, 47syl13anc 1374 . . . . . . 7 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 + 𝑝) 𝐴) = ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)))
4939, 40, 483eqtrrd 2769 . . . . . 6 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ((𝑜 𝐴)(.r𝑅)(𝑝 𝐴)) = ((𝑜 𝐴)(.r𝑅) 1 ))
502, 17, 18, 24, 30, 34, 35, 49domnlcan 20630 . . . . 5 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → (𝑝 𝐴) = 1 )
51 oveq1 7394 . . . . . . 7 (𝑛 = 𝑝 → (𝑛 𝐴) = (𝑝 𝐴))
5251eqeq1d 2731 . . . . . 6 (𝑛 = 𝑝 → ((𝑛 𝐴) = 1 ↔ (𝑝 𝐴) = 1 ))
5352rspcev 3588 . . . . 5 ((𝑝 ∈ ℕ ∧ (𝑝 𝐴) = 1 ) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
5416, 50, 53syl2anc 584 . . . 4 (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴)) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
5554ex 412 . . 3 ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 ))
5655rexlimdvva 3194 . 2 (𝜑 → (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 𝐴) = ((𝑜 + 𝑝) 𝐴) → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 ))
5715, 56mpd 15 1 (𝜑 → ∃𝑛 ∈ ℕ (𝑛 𝐴) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  {csn 4589  cfv 6511  (class class class)co 7387  Fincfn 8918   + caddc 11071  cn 12186  0cn0 12442  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Mgmcmgm 18565  Smgrpcsgrp 18645  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  Domncdomn 20601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-domn 20604
This theorem is referenced by:  fiabv  42524
  Copyright terms: Public domain W3C validator