Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . 4
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
2 | | fidomncyc.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
3 | 1, 2 | mgpbas 20167 |
. . 3
⊢ 𝐵 =
(Base‘(mulGrp‘𝑅)) |
4 | | fidomncyc.e |
. . 3
⊢ ↑ =
(.g‘(mulGrp‘𝑅)) |
5 | | fidomncyc.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) |
6 | | domnring 20729 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | 1 | ringmgp 20266 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
10 | | mndmgm 18779 |
. . . 4
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Mgm) |
11 | 9, 10 | syl 17 |
. . 3
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mgm) |
12 | | fidomncyc.f |
. . 3
⊢ (𝜑 → 𝐵 ∈ Fin) |
13 | | fidomncyc.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (𝐵 ∖ { 0 })) |
14 | 13 | eldifad 3988 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
15 | 3, 4, 11, 12, 14 | fimgmcyc 42489 |
. 2
⊢ (𝜑 → ∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) |
16 | | simplrr 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑝 ∈ ℕ) |
17 | | fidomncyc.0 |
. . . . . 6
⊢ 0 =
(0g‘𝑅) |
18 | | eqid 2740 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
19 | 5 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Domn) |
20 | | nnnn0 12560 |
. . . . . . . . 9
⊢ (𝑜 ∈ ℕ → 𝑜 ∈
ℕ0) |
21 | 20 | ad2antrl 727 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑜 ∈ ℕ0) |
22 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ (𝐵 ∖ { 0 })) |
23 | 2, 17, 4, 19, 21, 22 | domnexpgn0cl 42478 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) |
24 | 23 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) ∈ (𝐵 ∖ { 0 })) |
25 | 11 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (mulGrp‘𝑅) ∈ Mgm) |
26 | | simprr 772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑝 ∈ ℕ) |
27 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝐴 ∈ 𝐵) |
28 | 3, 4 | mulgnncl 19129 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Mgm ∧ 𝑝 ∈
ℕ ∧ 𝐴 ∈
𝐵) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
29 | 25, 26, 27, 28 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
30 | 29 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) ∈ 𝐵) |
31 | | fidomncyc.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
32 | 2, 31 | ringidcl 20289 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
33 | 7, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ 𝐵) |
34 | 33 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 1 ∈ 𝐵) |
35 | 5 | ad2antrr 725 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑅 ∈ Domn) |
36 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → 𝑅 ∈ Ring) |
37 | 23 | eldifad 3988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → (𝑜 ↑ 𝐴) ∈ 𝐵) |
38 | 2, 18, 31, 36, 37 | ringridmd 20296 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) |
39 | 38 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 ) = (𝑜 ↑ 𝐴)) |
40 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) |
41 | | mndsgrp 18778 |
. . . . . . . . . 10
⊢
((mulGrp‘𝑅)
∈ Mnd → (mulGrp‘𝑅) ∈ Smgrp) |
42 | 9, 41 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Smgrp) |
43 | 42 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (mulGrp‘𝑅) ∈ Smgrp) |
44 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝑜 ∈ ℕ) |
45 | 27 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → 𝐴 ∈ 𝐵) |
46 | 1, 18 | mgpplusg 20165 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
47 | 3, 4, 46 | mulgnndir 19143 |
. . . . . . . 8
⊢
(((mulGrp‘𝑅)
∈ Smgrp ∧ (𝑜
∈ ℕ ∧ 𝑝
∈ ℕ ∧ 𝐴
∈ 𝐵)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) |
48 | 43, 44, 16, 45, 47 | syl13anc 1372 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 + 𝑝) ↑ 𝐴) = ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴))) |
49 | 39, 40, 48 | 3eqtrrd 2785 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ((𝑜 ↑ 𝐴)(.r‘𝑅)(𝑝 ↑ 𝐴)) = ((𝑜 ↑ 𝐴)(.r‘𝑅) 1 )) |
50 | 2, 17, 18, 24, 30, 34, 35, 49 | domnlcan 20743 |
. . . . 5
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → (𝑝 ↑ 𝐴) = 1 ) |
51 | | oveq1 7455 |
. . . . . . 7
⊢ (𝑛 = 𝑝 → (𝑛 ↑ 𝐴) = (𝑝 ↑ 𝐴)) |
52 | 51 | eqeq1d 2742 |
. . . . . 6
⊢ (𝑛 = 𝑝 → ((𝑛 ↑ 𝐴) = 1 ↔ (𝑝 ↑ 𝐴) = 1 )) |
53 | 52 | rspcev 3635 |
. . . . 5
⊢ ((𝑝 ∈ ℕ ∧ (𝑝 ↑ 𝐴) = 1 ) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |
54 | 16, 50, 53 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) ∧ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴)) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |
55 | 54 | ex 412 |
. . 3
⊢ ((𝜑 ∧ (𝑜 ∈ ℕ ∧ 𝑝 ∈ ℕ)) → ((𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) |
56 | 55 | rexlimdvva 3219 |
. 2
⊢ (𝜑 → (∃𝑜 ∈ ℕ ∃𝑝 ∈ ℕ (𝑜 ↑ 𝐴) = ((𝑜 + 𝑝) ↑ 𝐴) → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 )) |
57 | 15, 56 | mpd 15 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ (𝑛 ↑ 𝐴) = 1 ) |