| Step | Hyp | Ref
| Expression |
| 1 | | euendfunc.0 |
. . 3
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 2 | | n0 4333 |
. . 3
⊢ (𝐵 ≠ ∅ ↔
∃𝑥 𝑥 ∈ 𝐵) |
| 3 | 1, 2 | sylib 218 |
. 2
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐵) |
| 4 | | eqid 2736 |
. . 3
⊢
(idfunc‘𝐶) = (idfunc‘𝐶) |
| 5 | | eqid 2736 |
. . 3
⊢ (𝐶Δfunc𝐶) = (𝐶Δfunc𝐶) |
| 6 | | euendfunc.f |
. . . . . 6
⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 8 | | euex 2577 |
. . . . 5
⊢
(∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶) → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 10 | | funcrcl 17881 |
. . . . . 6
⊢ (𝑓 ∈ (𝐶 Func 𝐶) → (𝐶 ∈ Cat ∧ 𝐶 ∈ Cat)) |
| 11 | 10 | simpld 494 |
. . . . 5
⊢ (𝑓 ∈ (𝐶 Func 𝐶) → 𝐶 ∈ Cat) |
| 12 | 11 | exlimiv 1930 |
. . . 4
⊢
(∃𝑓 𝑓 ∈ (𝐶 Func 𝐶) → 𝐶 ∈ Cat) |
| 13 | 9, 12 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 14 | | euendfunc.b |
. . 3
⊢ 𝐵 = (Base‘𝐶) |
| 15 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) |
| 16 | | eqid 2736 |
. . 3
⊢
((1st ‘(𝐶Δfunc𝐶))‘𝑥) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥) |
| 17 | 4 | idfucl 17899 |
. . . . 5
⊢ (𝐶 ∈ Cat →
(idfunc‘𝐶) ∈ (𝐶 Func 𝐶)) |
| 18 | 13, 17 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) →
(idfunc‘𝐶) ∈ (𝐶 Func 𝐶)) |
| 19 | 5, 13, 13, 14, 15, 16 | diag1cl 18259 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)) |
| 20 | | eumo 2578 |
. . . . . . 7
⊢
(∃!𝑓 𝑓 ∈ (𝐶 Func 𝐶) → ∃*𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 21 | 7, 20 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃*𝑓 𝑓 ∈ (𝐶 Func 𝐶)) |
| 22 | | eleq1w 2818 |
. . . . . . 7
⊢ (𝑓 = 𝑔 → (𝑓 ∈ (𝐶 Func 𝐶) ↔ 𝑔 ∈ (𝐶 Func 𝐶))) |
| 23 | 22 | mo4 2566 |
. . . . . 6
⊢
(∃*𝑓 𝑓 ∈ (𝐶 Func 𝐶) ↔ ∀𝑓∀𝑔((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) → 𝑓 = 𝑔)) |
| 24 | 21, 23 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∀𝑓∀𝑔((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) → 𝑓 = 𝑔)) |
| 25 | | fvex 6894 |
. . . . . 6
⊢
(idfunc‘𝐶) ∈ V |
| 26 | | fvex 6894 |
. . . . . 6
⊢
((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ V |
| 27 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → 𝑓 = (idfunc‘𝐶)) |
| 28 | 27 | eleq1d 2820 |
. . . . . . . . 9
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → (𝑓 ∈ (𝐶 Func 𝐶) ↔
(idfunc‘𝐶) ∈ (𝐶 Func 𝐶))) |
| 29 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) |
| 30 | 29 | eleq1d 2820 |
. . . . . . . . 9
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → (𝑔 ∈ (𝐶 Func 𝐶) ↔ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶))) |
| 31 | 28, 30 | anbi12d 632 |
. . . . . . . 8
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → ((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) ↔
((idfunc‘𝐶) ∈ (𝐶 Func 𝐶) ∧ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)))) |
| 32 | | eqeq12 2753 |
. . . . . . . 8
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → (𝑓 = 𝑔 ↔ (idfunc‘𝐶) = ((1st
‘(𝐶Δfunc𝐶))‘𝑥))) |
| 33 | 31, 32 | imbi12d 344 |
. . . . . . 7
⊢ ((𝑓 =
(idfunc‘𝐶) ∧ 𝑔 = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) → (((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) → 𝑓 = 𝑔) ↔
(((idfunc‘𝐶) ∈ (𝐶 Func 𝐶) ∧ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)) →
(idfunc‘𝐶) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)))) |
| 34 | 33 | spc2gv 3584 |
. . . . . 6
⊢
(((idfunc‘𝐶) ∈ V ∧ ((1st
‘(𝐶Δfunc𝐶))‘𝑥) ∈ V) → (∀𝑓∀𝑔((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) → 𝑓 = 𝑔) →
(((idfunc‘𝐶) ∈ (𝐶 Func 𝐶) ∧ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)) →
(idfunc‘𝐶) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)))) |
| 35 | 25, 26, 34 | mp2an 692 |
. . . . 5
⊢
(∀𝑓∀𝑔((𝑓 ∈ (𝐶 Func 𝐶) ∧ 𝑔 ∈ (𝐶 Func 𝐶)) → 𝑓 = 𝑔) →
(((idfunc‘𝐶) ∈ (𝐶 Func 𝐶) ∧ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)) →
(idfunc‘𝐶) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥))) |
| 36 | 24, 35 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) →
(((idfunc‘𝐶) ∈ (𝐶 Func 𝐶) ∧ ((1st ‘(𝐶Δfunc𝐶))‘𝑥) ∈ (𝐶 Func 𝐶)) →
(idfunc‘𝐶) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥))) |
| 37 | 18, 19, 36 | mp2and 699 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) →
(idfunc‘𝐶) = ((1st ‘(𝐶Δfunc𝐶))‘𝑥)) |
| 38 | 4, 5, 13, 14, 15, 16, 37 | idfudiag1 49377 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ TermCat) |
| 39 | 3, 38 | exlimddv 1935 |
1
⊢ (𝜑 → 𝐶 ∈ TermCat) |