Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumcl | Structured version Visualization version GIF version |
Description: Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.) |
Ref | Expression |
---|---|
fsumcl.1 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumcl.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
fsumcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssidd 3916 | . 2 ⊢ (𝜑 → ℂ ⊆ ℂ) | |
2 | addcl 10647 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ) | |
3 | 2 | adantl 486 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ) |
4 | fsumcl.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fsumcl.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) | |
6 | 0cnd 10662 | . 2 ⊢ (𝜑 → 0 ∈ ℂ) | |
7 | 1, 3, 4, 5, 6 | fsumcllem 15127 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
Copyright terms: Public domain | W3C validator |