MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem0h Structured version   Visualization version   GIF version

Theorem gausslemma2dlem0h 26856
Description: Auxiliary lemma 8 for gausslemma2d 26867. (Contributed by AV, 9-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2dlem0.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2dlem0.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2dlem0.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2dlem0.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem0h (𝜑𝑁 ∈ ℕ0)

Proof of Theorem gausslemma2dlem0h
StepHypRef Expression
1 gausslemma2dlem0.n . 2 𝑁 = (𝐻𝑀)
2 gausslemma2dlem0.p . . . . . 6 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 gausslemma2dlem0.h . . . . . 6 𝐻 = ((𝑃 − 1) / 2)
42, 3gausslemma2dlem0b 26850 . . . . 5 (𝜑𝐻 ∈ ℕ)
54nnzd 12582 . . . 4 (𝜑𝐻 ∈ ℤ)
6 gausslemma2dlem0.m . . . . . 6 𝑀 = (⌊‘(𝑃 / 4))
72, 6gausslemma2dlem0d 26852 . . . . 5 (𝜑𝑀 ∈ ℕ0)
87nn0zd 12581 . . . 4 (𝜑𝑀 ∈ ℤ)
95, 8zsubcld 12668 . . 3 (𝜑 → (𝐻𝑀) ∈ ℤ)
102, 6, 3gausslemma2dlem0g 26855 . . . 4 (𝜑𝑀𝐻)
114nnred 12224 . . . . 5 (𝜑𝐻 ∈ ℝ)
127nn0red 12530 . . . . 5 (𝜑𝑀 ∈ ℝ)
1311, 12subge0d 11801 . . . 4 (𝜑 → (0 ≤ (𝐻𝑀) ↔ 𝑀𝐻))
1410, 13mpbird 257 . . 3 (𝜑 → 0 ≤ (𝐻𝑀))
15 elnn0z 12568 . . 3 ((𝐻𝑀) ∈ ℕ0 ↔ ((𝐻𝑀) ∈ ℤ ∧ 0 ≤ (𝐻𝑀)))
169, 14, 15sylanbrc 584 . 2 (𝜑 → (𝐻𝑀) ∈ ℕ0)
171, 16eqeltrid 2838 1 (𝜑𝑁 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cdif 3945  {csn 4628   class class class wbr 5148  cfv 6541  (class class class)co 7406  0cc0 11107  1c1 11108  cle 11246  cmin 11441   / cdiv 11868  2c2 12264  4c4 12266  0cn0 12469  cz 12555  cfl 13752  cprime 16605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fl 13754  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-dvds 16195  df-prm 16606
This theorem is referenced by:  gausslemma2dlem0i  26857  gausslemma2dlem6  26865  gausslemma2dlem7  26866  gausslemma2d  26867
  Copyright terms: Public domain W3C validator