![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0h | Structured version Visualization version GIF version |
Description: Auxiliary lemma 8 for gausslemma2d 27337. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2dlem0.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2dlem0.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
Ref | Expression |
---|---|
gausslemma2dlem0h | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.n | . 2 ⊢ 𝑁 = (𝐻 − 𝑀) | |
2 | gausslemma2dlem0.p | . . . . . 6 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | gausslemma2dlem0.h | . . . . . 6 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
4 | 2, 3 | gausslemma2dlem0b 27320 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
5 | 4 | nnzd 12615 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ ℤ) |
6 | gausslemma2dlem0.m | . . . . . 6 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
7 | 2, 6 | gausslemma2dlem0d 27322 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
8 | 7 | nn0zd 12614 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
9 | 5, 8 | zsubcld 12701 | . . 3 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℤ) |
10 | 2, 6, 3 | gausslemma2dlem0g 27325 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ 𝐻) |
11 | 4 | nnred 12257 | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ ℝ) |
12 | 7 | nn0red 12563 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℝ) |
13 | 11, 12 | subge0d 11834 | . . . 4 ⊢ (𝜑 → (0 ≤ (𝐻 − 𝑀) ↔ 𝑀 ≤ 𝐻)) |
14 | 10, 13 | mpbird 256 | . . 3 ⊢ (𝜑 → 0 ≤ (𝐻 − 𝑀)) |
15 | elnn0z 12601 | . . 3 ⊢ ((𝐻 − 𝑀) ∈ ℕ0 ↔ ((𝐻 − 𝑀) ∈ ℤ ∧ 0 ≤ (𝐻 − 𝑀))) | |
16 | 9, 14, 15 | sylanbrc 581 | . 2 ⊢ (𝜑 → (𝐻 − 𝑀) ∈ ℕ0) |
17 | 1, 16 | eqeltrid 2829 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3942 {csn 4629 class class class wbr 5148 ‘cfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 ≤ cle 11279 − cmin 11474 / cdiv 11901 2c2 12297 4c4 12299 ℕ0cn0 12502 ℤcz 12588 ⌊cfl 13787 ℙcprime 16641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fl 13789 df-seq 13999 df-exp 14059 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-dvds 16231 df-prm 16642 |
This theorem is referenced by: gausslemma2dlem0i 27327 gausslemma2dlem6 27335 gausslemma2dlem7 27336 gausslemma2d 27337 |
Copyright terms: Public domain | W3C validator |