MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem7 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem7 27291
Description: Lemma 7 for gausslemma2d 27292. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem7
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem6 27290 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
71, 2gausslemma2dlem0b 27275 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℕ)
87nnnn0d 12510 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
98faccld 14256 . . . . . . . . 9 (𝜑 → (!‘𝐻) ∈ ℕ)
109nncnd 12209 . . . . . . . 8 (𝜑 → (!‘𝐻) ∈ ℂ)
1110mullidd 11199 . . . . . . 7 (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻))
1211eqcomd 2736 . . . . . 6 (𝜑 → (!‘𝐻) = (1 · (!‘𝐻)))
1312oveq1d 7405 . . . . 5 (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃))
1413eqeq1d 2732 . . . 4 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)))
15 1zzd 12571 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 neg1z 12576 . . . . . . 7 -1 ∈ ℤ
171, 4, 2, 5gausslemma2dlem0h 27281 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
18 zexpcl 14048 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
1916, 17, 18sylancr 587 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℤ)
20 2z 12572 . . . . . . 7 2 ∈ ℤ
21 zexpcl 14048 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ)
2220, 8, 21sylancr 587 . . . . . 6 (𝜑 → (2↑𝐻) ∈ ℤ)
2319, 22zmulcld 12651 . . . . 5 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
249nnzd 12563 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
25 eldifi 4097 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
26 prmnn 16651 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
271, 25, 263syl 18 . . . . 5 (𝜑𝑃 ∈ ℕ)
281, 2gausslemma2dlem0c 27276 . . . . 5 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
29 cncongrcoprm 16647 . . . . 5 (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3015, 23, 24, 27, 28, 29syl32anc 1380 . . . 4 (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3114, 30bitrd 279 . . 3 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
32 simpr 484 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))
3326nnred 12208 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
34 prmgt1 16674 . . . . . . . 8 (𝑃 ∈ ℙ → 1 < 𝑃)
3533, 34jca 511 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
36 1mod 13872 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
371, 25, 35, 364syl 19 . . . . . 6 (𝜑 → (1 mod 𝑃) = 1)
3837adantr 480 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1)
3932, 38eqtr3d 2767 . . . 4 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
4039ex 412 . . 3 (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
4131, 40sylbid 240 . 2 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
426, 41mpd 15 1 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  1c1 11076   · cmul 11080   < clt 11215  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  0cn0 12449  cz 12536  ...cfz 13475  cfl 13759   mod cmo 13838  cexp 14033  !cfa 14245   gcd cgcd 16471  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ioo 13317  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472  df-prm 16649
This theorem is referenced by:  gausslemma2d  27292
  Copyright terms: Public domain W3C validator