| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gausslemma2dlem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for gausslemma2d 27355. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
| gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
| gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
| Ref | Expression |
|---|---|
| gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
| 2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
| 3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
| 4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
| 5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 27353 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
| 7 | 1, 2 | gausslemma2dlem0b 27338 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 8 | 7 | nnnn0d 12570 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
| 9 | 8 | faccld 14306 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
| 10 | 9 | nncnd 12264 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
| 11 | 10 | mullidd 11261 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
| 12 | 11 | eqcomd 2740 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
| 13 | 12 | oveq1d 7428 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
| 14 | 13 | eqeq1d 2736 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
| 15 | 1zzd 12631 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 16 | neg1z 12636 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
| 17 | 1, 4, 2, 5 | gausslemma2dlem0h 27344 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| 18 | zexpcl 14099 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
| 19 | 16, 17, 18 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
| 20 | 2z 12632 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 21 | zexpcl 14099 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
| 22 | 20, 8, 21 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
| 23 | 19, 22 | zmulcld 12711 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
| 24 | 9 | nnzd 12623 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
| 25 | eldifi 4111 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
| 26 | prmnn 16694 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 27 | 1, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 28 | 1, 2 | gausslemma2dlem0c 27339 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
| 29 | cncongrcoprm 16690 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
| 30 | 15, 23, 24, 27, 28, 29 | syl32anc 1379 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 31 | 14, 30 | bitrd 279 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
| 32 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
| 33 | 26 | nnred 12263 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
| 34 | prmgt1 16717 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
| 35 | 33, 34 | jca 511 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
| 36 | 1mod 13925 | . . . . . . 7 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
| 37 | 1, 25, 35, 36 | 4syl 19 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
| 38 | 37 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
| 39 | 32, 38 | eqtr3d 2771 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| 40 | 39 | ex 412 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 41 | 31, 40 | sylbid 240 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
| 42 | 6, 41 | mpd 15 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 ifcif 4505 {csn 4606 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 1c1 11138 · cmul 11142 < clt 11277 − cmin 11474 -cneg 11475 / cdiv 11902 ℕcn 12248 2c2 12303 4c4 12305 ℕ0cn0 12509 ℤcz 12596 ...cfz 13529 ⌊cfl 13812 mod cmo 13891 ↑cexp 14084 !cfa 14295 gcd cgcd 16514 ℙcprime 16691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-rp 13017 df-ioo 13373 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14296 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-prod 15923 df-dvds 16274 df-gcd 16515 df-prm 16692 |
| This theorem is referenced by: gausslemma2d 27355 |
| Copyright terms: Public domain | W3C validator |