MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem7 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem7 25955
Description: Lemma 7 for gausslemma2d 25956. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem7
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem6 25954 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
71, 2gausslemma2dlem0b 25939 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℕ)
87nnnn0d 11943 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
98faccld 13640 . . . . . . . . 9 (𝜑 → (!‘𝐻) ∈ ℕ)
109nncnd 11641 . . . . . . . 8 (𝜑 → (!‘𝐻) ∈ ℂ)
1110mulid2d 10648 . . . . . . 7 (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻))
1211eqcomd 2828 . . . . . 6 (𝜑 → (!‘𝐻) = (1 · (!‘𝐻)))
1312oveq1d 7155 . . . . 5 (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃))
1413eqeq1d 2824 . . . 4 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)))
15 1zzd 12001 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 neg1z 12006 . . . . . . 7 -1 ∈ ℤ
171, 4, 2, 5gausslemma2dlem0h 25945 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
18 zexpcl 13440 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
1916, 17, 18sylancr 590 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℤ)
20 2z 12002 . . . . . . 7 2 ∈ ℤ
21 zexpcl 13440 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ)
2220, 8, 21sylancr 590 . . . . . 6 (𝜑 → (2↑𝐻) ∈ ℤ)
2319, 22zmulcld 12081 . . . . 5 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
249nnzd 12074 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
25 eldifi 4078 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
26 prmnn 16007 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
271, 25, 263syl 18 . . . . 5 (𝜑𝑃 ∈ ℕ)
281, 2gausslemma2dlem0c 25940 . . . . 5 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
29 cncongrcoprm 16003 . . . . 5 (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3015, 23, 24, 27, 28, 29syl32anc 1375 . . . 4 (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3114, 30bitrd 282 . . 3 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
32 simpr 488 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))
3326nnred 11640 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
34 prmgt1 16030 . . . . . . . . 9 (𝑃 ∈ ℙ → 1 < 𝑃)
3533, 34jca 515 . . . . . . . 8 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
3625, 35syl 17 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
37 1mod 13266 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
381, 36, 373syl 18 . . . . . 6 (𝜑 → (1 mod 𝑃) = 1)
3938adantr 484 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1)
4032, 39eqtr3d 2859 . . . 4 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
4140ex 416 . . 3 (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
4231, 41sylbid 243 . 2 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
436, 42mpd 15 1 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  cdif 3905  ifcif 4439  {csn 4539   class class class wbr 5042  cmpt 5122  cfv 6334  (class class class)co 7140  cr 10525  1c1 10527   · cmul 10531   < clt 10664  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  0cn0 11885  cz 11969  ...cfz 12885  cfl 13155   mod cmo 13232  cexp 13425  !cfa 13629   gcd cgcd 15832  cprime 16004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ioo 12730  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-prod 15251  df-dvds 15599  df-gcd 15833  df-prm 16005
This theorem is referenced by:  gausslemma2d  25956
  Copyright terms: Public domain W3C validator