![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for gausslemma2d 27432. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2d.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2d.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
gausslemma2d.r | ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
gausslemma2d.m | ⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
gausslemma2d.n | ⊢ 𝑁 = (𝐻 − 𝑀) |
Ref | Expression |
---|---|
gausslemma2dlem7 | ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2d.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
2 | gausslemma2d.h | . . 3 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
3 | gausslemma2d.r | . . 3 ⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) | |
4 | gausslemma2d.m | . . 3 ⊢ 𝑀 = (⌊‘(𝑃 / 4)) | |
5 | gausslemma2d.n | . . 3 ⊢ 𝑁 = (𝐻 − 𝑀) | |
6 | 1, 2, 3, 4, 5 | gausslemma2dlem6 27430 | . 2 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)) |
7 | 1, 2 | gausslemma2dlem0b 27415 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
8 | 7 | nnnn0d 12584 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐻 ∈ ℕ0) |
9 | 8 | faccld 14319 | . . . . . . . . 9 ⊢ (𝜑 → (!‘𝐻) ∈ ℕ) |
10 | 9 | nncnd 12279 | . . . . . . . 8 ⊢ (𝜑 → (!‘𝐻) ∈ ℂ) |
11 | 10 | mullidd 11276 | . . . . . . 7 ⊢ (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻)) |
12 | 11 | eqcomd 2740 | . . . . . 6 ⊢ (𝜑 → (!‘𝐻) = (1 · (!‘𝐻))) |
13 | 12 | oveq1d 7445 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃)) |
14 | 13 | eqeq1d 2736 | . . . 4 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))) |
15 | 1zzd 12645 | . . . . 5 ⊢ (𝜑 → 1 ∈ ℤ) | |
16 | neg1z 12650 | . . . . . . 7 ⊢ -1 ∈ ℤ | |
17 | 1, 4, 2, 5 | gausslemma2dlem0h 27421 | . . . . . . 7 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
18 | zexpcl 14113 | . . . . . . 7 ⊢ ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ) | |
19 | 16, 17, 18 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
20 | 2z 12646 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
21 | zexpcl 14113 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ) | |
22 | 20, 8, 21 | sylancr 587 | . . . . . 6 ⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
23 | 19, 22 | zmulcld 12725 | . . . . 5 ⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ) |
24 | 9 | nnzd 12637 | . . . . 5 ⊢ (𝜑 → (!‘𝐻) ∈ ℤ) |
25 | eldifi 4140 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
26 | prmnn 16707 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
27 | 1, 25, 26 | 3syl 18 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ ℕ) |
28 | 1, 2 | gausslemma2dlem0c 27416 | . . . . 5 ⊢ (𝜑 → ((!‘𝐻) gcd 𝑃) = 1) |
29 | cncongrcoprm 16703 | . . . . 5 ⊢ (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) | |
30 | 15, 23, 24, 27, 28, 29 | syl32anc 1377 | . . . 4 ⊢ (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
31 | 14, 30 | bitrd 279 | . . 3 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))) |
32 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) | |
33 | 26 | nnred 12278 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℝ) |
34 | prmgt1 16730 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → 1 < 𝑃) | |
35 | 33, 34 | jca 511 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃)) |
36 | 1mod 13939 | . . . . . . 7 ⊢ ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1) | |
37 | 1, 25, 35, 36 | 4syl 19 | . . . . . 6 ⊢ (𝜑 → (1 mod 𝑃) = 1) |
38 | 37 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1) |
39 | 32, 38 | eqtr3d 2776 | . . . 4 ⊢ ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
40 | 39 | ex 412 | . . 3 ⊢ (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
41 | 31, 40 | sylbid 240 | . 2 ⊢ (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)) |
42 | 6, 41 | mpd 15 | 1 ⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 ifcif 4530 {csn 4630 class class class wbr 5147 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 1c1 11153 · cmul 11157 < clt 11292 − cmin 11489 -cneg 11490 / cdiv 11917 ℕcn 12263 2c2 12318 4c4 12320 ℕ0cn0 12523 ℤcz 12610 ...cfz 13543 ⌊cfl 13826 mod cmo 13905 ↑cexp 14098 !cfa 14308 gcd cgcd 16527 ℙcprime 16704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-ioo 13387 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-prod 15936 df-dvds 16287 df-gcd 16528 df-prm 16705 |
This theorem is referenced by: gausslemma2d 27432 |
Copyright terms: Public domain | W3C validator |