MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2dlem7 Structured version   Visualization version   GIF version

Theorem gausslemma2dlem7 27354
Description: Lemma 7 for gausslemma2d 27355. (Contributed by AV, 13-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2dlem7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2dlem7
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem6 27353 . 2 (𝜑 → ((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃))
71, 2gausslemma2dlem0b 27338 . . . . . . . . . . 11 (𝜑𝐻 ∈ ℕ)
87nnnn0d 12570 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
98faccld 14306 . . . . . . . . 9 (𝜑 → (!‘𝐻) ∈ ℕ)
109nncnd 12264 . . . . . . . 8 (𝜑 → (!‘𝐻) ∈ ℂ)
1110mullidd 11261 . . . . . . 7 (𝜑 → (1 · (!‘𝐻)) = (!‘𝐻))
1211eqcomd 2740 . . . . . 6 (𝜑 → (!‘𝐻) = (1 · (!‘𝐻)))
1312oveq1d 7428 . . . . 5 (𝜑 → ((!‘𝐻) mod 𝑃) = ((1 · (!‘𝐻)) mod 𝑃))
1413eqeq1d 2736 . . . 4 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ ((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃)))
15 1zzd 12631 . . . . 5 (𝜑 → 1 ∈ ℤ)
16 neg1z 12636 . . . . . . 7 -1 ∈ ℤ
171, 4, 2, 5gausslemma2dlem0h 27344 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
18 zexpcl 14099 . . . . . . 7 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
1916, 17, 18sylancr 587 . . . . . 6 (𝜑 → (-1↑𝑁) ∈ ℤ)
20 2z 12632 . . . . . . 7 2 ∈ ℤ
21 zexpcl 14099 . . . . . . 7 ((2 ∈ ℤ ∧ 𝐻 ∈ ℕ0) → (2↑𝐻) ∈ ℤ)
2220, 8, 21sylancr 587 . . . . . 6 (𝜑 → (2↑𝐻) ∈ ℤ)
2319, 22zmulcld 12711 . . . . 5 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
249nnzd 12623 . . . . 5 (𝜑 → (!‘𝐻) ∈ ℤ)
25 eldifi 4111 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
26 prmnn 16694 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
271, 25, 263syl 18 . . . . 5 (𝜑𝑃 ∈ ℕ)
281, 2gausslemma2dlem0c 27339 . . . . 5 (𝜑 → ((!‘𝐻) gcd 𝑃) = 1)
29 cncongrcoprm 16690 . . . . 5 (((1 ∈ ℤ ∧ ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ ∧ (!‘𝐻) ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ((!‘𝐻) gcd 𝑃) = 1)) → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3015, 23, 24, 27, 28, 29syl32anc 1379 . . . 4 (𝜑 → (((1 · (!‘𝐻)) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
3114, 30bitrd 279 . . 3 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) ↔ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)))
32 simpr 484 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃))
3326nnred 12263 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
34 prmgt1 16717 . . . . . . . 8 (𝑃 ∈ ℙ → 1 < 𝑃)
3533, 34jca 511 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
36 1mod 13925 . . . . . . 7 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
371, 25, 35, 364syl 19 . . . . . 6 (𝜑 → (1 mod 𝑃) = 1)
3837adantr 480 . . . . 5 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (1 mod 𝑃) = 1)
3932, 38eqtr3d 2771 . . . 4 ((𝜑 ∧ (1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
4039ex 412 . . 3 (𝜑 → ((1 mod 𝑃) = (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
4131, 40sylbid 240 . 2 (𝜑 → (((!‘𝐻) mod 𝑃) = ((((-1↑𝑁) · (2↑𝐻)) · (!‘𝐻)) mod 𝑃) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1))
426, 41mpd 15 1 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cdif 3928  ifcif 4505  {csn 4606   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cr 11136  1c1 11138   · cmul 11142   < clt 11277  cmin 11474  -cneg 11475   / cdiv 11902  cn 12248  2c2 12303  4c4 12305  0cn0 12509  cz 12596  ...cfz 13529  cfl 13812   mod cmo 13891  cexp 14084  !cfa 14295   gcd cgcd 16514  cprime 16691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ioo 13373  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14296  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-prod 15923  df-dvds 16274  df-gcd 16515  df-prm 16692
This theorem is referenced by:  gausslemma2d  27355
  Copyright terms: Public domain W3C validator