| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . . 4
⊢
(0..^𝑁) = (0..^𝑁) |
| 2 | | gpgedgvtx0.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 3 | | gpgedgvtx0.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 4 | | gpgedgvtx0.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
| 5 | 1, 2, 3, 4 | gpgvtxel 47978 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | | fveq2 6886 |
. . . . . . . . 9
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (1st ‘𝑋) = (1st
‘〈𝑥, 𝑦〉)) |
| 7 | 6 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑋 = 〈𝑥, 𝑦〉) → (1st ‘𝑋) = (1st
‘〈𝑥, 𝑦〉)) |
| 8 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 9 | | vex 3467 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 10 | 8, 9 | op1st 8004 |
. . . . . . . 8
⊢
(1st ‘〈𝑥, 𝑦〉) = 𝑥 |
| 11 | 7, 10 | eqtrdi 2785 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑋 = 〈𝑥, 𝑦〉) → (1st ‘𝑋) = 𝑥) |
| 12 | 11 | eqeq1d 2736 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑋 = 〈𝑥, 𝑦〉) → ((1st ‘𝑋) = 0 ↔ 𝑥 = 0)) |
| 13 | | opeq1 4853 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) |
| 14 | 13 | eqeq2d 2745 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑥 = 0) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 16 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ (0..^𝑁)) |
| 17 | | opeq2 4854 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → 〈0, 𝑧〉 = 〈0, 𝑦〉) |
| 18 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → (𝑧 + 1) = (𝑦 + 1)) |
| 19 | 18 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ((𝑧 + 1) mod 𝑁) = ((𝑦 + 1) mod 𝑁)) |
| 20 | 19 | opeq2d 4860 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → 〈0, ((𝑧 + 1) mod 𝑁)〉 = 〈0, ((𝑦 + 1) mod 𝑁)〉) |
| 21 | 17, 20 | preq12d 4721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉}) |
| 22 | 21 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉})) |
| 23 | | opeq2 4854 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → 〈1, 𝑧〉 = 〈1, 𝑦〉) |
| 24 | 17, 23 | preq12d 4721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → {〈0, 𝑧〉, 〈1, 𝑧〉} = {〈0, 𝑦〉, 〈1, 𝑦〉}) |
| 25 | 24 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉})) |
| 26 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → (𝑧 + 𝐾) = (𝑦 + 𝐾)) |
| 27 | 26 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → ((𝑧 + 𝐾) mod 𝑁) = ((𝑦 + 𝐾) mod 𝑁)) |
| 28 | 27 | opeq2d 4860 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → 〈1, ((𝑧 + 𝐾) mod 𝑁)〉 = 〈1, ((𝑦 + 𝐾) mod 𝑁)〉) |
| 29 | 23, 28 | preq12d 4721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}) |
| 30 | 29 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉})) |
| 31 | 22, 25, 30 | 3orbi123d 1436 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}))) |
| 32 | 31 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) ∧ 𝑧 = 𝑦) → (({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}))) |
| 33 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ {〈0,
𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} |
| 34 | 33 | 3mix1i 1333 |
. . . . . . . . . . . . . 14
⊢
({〈0, 𝑦〉,
〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}) |
| 35 | 34 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉})) |
| 36 | 16, 32, 35 | rspcedvd 3607 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})) |
| 37 | 21 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉})) |
| 38 | 24 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ↔ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉})) |
| 39 | 29 | eqeq2d 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉})) |
| 40 | 37, 38, 39 | 3orbi123d 1436 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → (({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}))) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) ∧ 𝑧 = 𝑦) → (({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}))) |
| 42 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ {〈0,
𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} |
| 43 | 42 | 3mix2i 1334 |
. . . . . . . . . . . . . 14
⊢
({〈0, 𝑦〉,
〈1, 𝑦〉} =
{〈0, 𝑦〉, 〈0,
((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉}) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑦〉, 〈1, 𝑦〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑦〉, 〈1, ((𝑦 + 𝐾) mod 𝑁)〉})) |
| 45 | 16, 41, 44 | rspcedvd 3607 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})) |
| 46 | | elfzo0l 13777 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (0..^𝑁) → (𝑦 = 0 ∨ 𝑦 ∈ (1..^𝑁))) |
| 47 | | eluzge3nn 12914 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
| 48 | 47 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → 𝑁 ∈ ℕ) |
| 49 | | fzo0end 13779 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (0..^𝑁)) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → (𝑁 − 1) ∈ (0..^𝑁)) |
| 51 | | opeq2 4854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 0 → 〈0, 𝑦〉 = 〈0,
0〉) |
| 52 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 0 → (𝑦 − 1) = (0 − 1)) |
| 53 | 52 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 0 → ((𝑦 − 1) mod 𝑁) = ((0 − 1) mod 𝑁)) |
| 54 | 53 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 0 → 〈0, ((𝑦 − 1) mod 𝑁)〉 = 〈0, ((0 −
1) mod 𝑁)〉) |
| 55 | 51, 54 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 0 → {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 0〉,
〈0, ((0 − 1) mod 𝑁)〉}) |
| 56 | | opeq2 4854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑁 − 1) → 〈0, 𝑧〉 = 〈0, (𝑁 −
1)〉) |
| 57 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑁 − 1) → (𝑧 + 1) = ((𝑁 − 1) + 1)) |
| 58 | 57 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑁 − 1) → ((𝑧 + 1) mod 𝑁) = (((𝑁 − 1) + 1) mod 𝑁)) |
| 59 | 58 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑁 − 1) → 〈0, ((𝑧 + 1) mod 𝑁)〉 = 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉) |
| 60 | 56, 59 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑁 − 1) → {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉}) |
| 61 | 55, 60 | eqeqan12d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = 0 ∧ 𝑧 = (𝑁 − 1)) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ↔ {〈0, 0〉, 〈0,
((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉})) |
| 62 | | opeq2 4854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑁 − 1) → 〈1, 𝑧〉 = 〈1, (𝑁 −
1)〉) |
| 63 | 56, 62 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑁 − 1) → {〈0, 𝑧〉, 〈1, 𝑧〉} = {〈0, (𝑁 − 1)〉, 〈1,
(𝑁 −
1)〉}) |
| 64 | 55, 63 | eqeqan12d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = 0 ∧ 𝑧 = (𝑁 − 1)) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ↔ {〈0,
0〉, 〈0, ((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈1, (𝑁 −
1)〉})) |
| 65 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑁 − 1) → (𝑧 + 𝐾) = ((𝑁 − 1) + 𝐾)) |
| 66 | 65 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑁 − 1) → ((𝑧 + 𝐾) mod 𝑁) = (((𝑁 − 1) + 𝐾) mod 𝑁)) |
| 67 | 66 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑁 − 1) → 〈1, ((𝑧 + 𝐾) mod 𝑁)〉 = 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉) |
| 68 | 62, 67 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑁 − 1) → {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} = {〈1, (𝑁 − 1)〉, 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉}) |
| 69 | 55, 68 | eqeqan12d 2748 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 = 0 ∧ 𝑧 = (𝑁 − 1)) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} ↔ {〈0, 0〉, 〈0,
((0 − 1) mod 𝑁)〉} = {〈1, (𝑁 − 1)〉, 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉})) |
| 70 | 61, 64, 69 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 = 0 ∧ 𝑧 = (𝑁 − 1)) → (({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 0〉,
〈0, ((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉} ∨ {〈0, 0〉,
〈0, ((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈1, (𝑁 − 1)〉} ∨
{〈0, 0〉, 〈0, ((0 − 1) mod 𝑁)〉} = {〈1, (𝑁 − 1)〉, 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉}))) |
| 71 | 70 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) ∧ 𝑧 = (𝑁 − 1)) → (({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 0〉,
〈0, ((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉} ∨ {〈0, 0〉,
〈0, ((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈1, (𝑁 − 1)〉} ∨
{〈0, 0〉, 〈0, ((0 − 1) mod 𝑁)〉} = {〈1, (𝑁 − 1)〉, 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉}))) |
| 72 | | nncn 12256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 73 | | npcan1 11670 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁) |
| 74 | 47, 72, 73 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘3) → ((𝑁 − 1) + 1) = 𝑁) |
| 75 | 74 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → (((𝑁 − 1) + 1) mod 𝑁) = (𝑁 mod 𝑁)) |
| 76 | | nnrp 13028 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 77 | | modid0 13919 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℝ+
→ (𝑁 mod 𝑁) = 0) |
| 78 | 47, 76, 77 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → (𝑁 mod 𝑁) = 0) |
| 79 | 75, 78 | eqtr2d 2770 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘3) → 0 = (((𝑁 − 1) + 1) mod 𝑁)) |
| 80 | 79 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘3) → 〈0, 0〉 = 〈0, (((𝑁 − 1) + 1) mod 𝑁)〉) |
| 81 | | df-neg 11477 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ -1 = (0
− 1) |
| 82 | 81 | eqcomi 2743 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0
− 1) = -1 |
| 83 | 82 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈
(ℤ≥‘3) → (0 − 1) = -1) |
| 84 | 83 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → ((0 − 1) mod 𝑁) = (-1 mod 𝑁)) |
| 85 | | m1modnnsub1 13940 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → (-1 mod
𝑁) = (𝑁 − 1)) |
| 86 | 47, 85 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈
(ℤ≥‘3) → (-1 mod 𝑁) = (𝑁 − 1)) |
| 87 | 84, 86 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈
(ℤ≥‘3) → ((0 − 1) mod 𝑁) = (𝑁 − 1)) |
| 88 | 87 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈
(ℤ≥‘3) → 〈0, ((0 − 1) mod 𝑁)〉 = 〈0, (𝑁 −
1)〉) |
| 89 | 80, 88 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈
(ℤ≥‘3) → {〈0, 0〉, 〈0, ((0 −
1) mod 𝑁)〉} =
{〈0, (((𝑁 − 1) +
1) mod 𝑁)〉, 〈0,
(𝑁 −
1)〉}) |
| 90 | 89 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → {〈0, 0〉, 〈0, ((0
− 1) mod 𝑁)〉} =
{〈0, (((𝑁 − 1) +
1) mod 𝑁)〉, 〈0,
(𝑁 −
1)〉}) |
| 91 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . 19
⊢ {〈0,
(((𝑁 − 1) + 1) mod
𝑁)〉, 〈0, (𝑁 − 1)〉} = {〈0,
(𝑁 − 1)〉,
〈0, (((𝑁 − 1) +
1) mod 𝑁)〉} |
| 92 | 90, 91 | eqtrdi 2785 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → {〈0, 0〉, 〈0, ((0
− 1) mod 𝑁)〉} =
{〈0, (𝑁 −
1)〉, 〈0, (((𝑁
− 1) + 1) mod 𝑁)〉}) |
| 93 | 92 | 3mix1d 1336 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → ({〈0, 0〉, 〈0, ((0
− 1) mod 𝑁)〉} =
{〈0, (𝑁 −
1)〉, 〈0, (((𝑁
− 1) + 1) mod 𝑁)〉} ∨ {〈0, 0〉, 〈0,
((0 − 1) mod 𝑁)〉} = {〈0, (𝑁 − 1)〉, 〈1, (𝑁 − 1)〉} ∨
{〈0, 0〉, 〈0, ((0 − 1) mod 𝑁)〉} = {〈1, (𝑁 − 1)〉, 〈1, (((𝑁 − 1) + 𝐾) mod 𝑁)〉})) |
| 94 | 50, 71, 93 | rspcedvd 3607 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 = 0) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})) |
| 95 | 94 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 0 → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 96 | | elfzofz 13697 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ (1...𝑁)) |
| 97 | | fz1fzo0m1 13732 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 ∈ (1...𝑁) → (𝑦 − 1) ∈ (0..^𝑁)) |
| 98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ (1..^𝑁) → (𝑦 − 1) ∈ (0..^𝑁)) |
| 99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → (𝑦 − 1) ∈ (0..^𝑁)) |
| 100 | | opeq2 4854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑦 − 1) → 〈0, 𝑧〉 = 〈0, (𝑦 −
1)〉) |
| 101 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑦 − 1) → (𝑧 + 1) = ((𝑦 − 1) + 1)) |
| 102 | 101 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑦 − 1) → ((𝑧 + 1) mod 𝑁) = (((𝑦 − 1) + 1) mod 𝑁)) |
| 103 | 102 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑦 − 1) → 〈0, ((𝑧 + 1) mod 𝑁)〉 = 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉) |
| 104 | 100, 103 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑦 − 1) → {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉}) |
| 105 | 104 | eqeq2d 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 − 1) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉})) |
| 106 | | opeq2 4854 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑦 − 1) → 〈1, 𝑧〉 = 〈1, (𝑦 −
1)〉) |
| 107 | 100, 106 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑦 − 1) → {〈0, 𝑧〉, 〈1, 𝑧〉} = {〈0, (𝑦 − 1)〉, 〈1,
(𝑦 −
1)〉}) |
| 108 | 107 | eqeq2d 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 − 1) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈1,
(𝑦 −
1)〉})) |
| 109 | | oveq1 7420 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 = (𝑦 − 1) → (𝑧 + 𝐾) = ((𝑦 − 1) + 𝐾)) |
| 110 | 109 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = (𝑦 − 1) → ((𝑧 + 𝐾) mod 𝑁) = (((𝑦 − 1) + 𝐾) mod 𝑁)) |
| 111 | 110 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = (𝑦 − 1) → 〈1, ((𝑧 + 𝐾) mod 𝑁)〉 = 〈1, (((𝑦 − 1) + 𝐾) mod 𝑁)〉) |
| 112 | 106, 111 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = (𝑦 − 1) → {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} = {〈1, (𝑦 − 1)〉, 〈1, (((𝑦 − 1) + 𝐾) mod 𝑁)〉}) |
| 113 | 112 | eqeq2d 2745 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = (𝑦 − 1) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉} ↔ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, (𝑦 − 1)〉, 〈1, (((𝑦 − 1) + 𝐾) mod 𝑁)〉})) |
| 114 | 105, 108,
113 | 3orbi123d 1436 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝑦 − 1) → (({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0,
(((𝑦 − 1) + 1) mod
𝑁)〉} ∨ {〈0,
𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈1,
(𝑦 − 1)〉} ∨
{〈0, 𝑦〉, 〈0,
((𝑦 − 1) mod 𝑁)〉} = {〈1, (𝑦 − 1)〉, 〈1,
(((𝑦 − 1) + 𝐾) mod 𝑁)〉}))) |
| 115 | 114 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) ∧ 𝑧 = (𝑦 − 1)) → (({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ↔ ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0,
(((𝑦 − 1) + 1) mod
𝑁)〉} ∨ {〈0,
𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈1,
(𝑦 − 1)〉} ∨
{〈0, 𝑦〉, 〈0,
((𝑦 − 1) mod 𝑁)〉} = {〈1, (𝑦 − 1)〉, 〈1,
(((𝑦 − 1) + 𝐾) mod 𝑁)〉}))) |
| 116 | | elfzoelz 13681 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (1..^𝑁) → 𝑦 ∈ ℤ) |
| 117 | | zcn 12601 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℤ → 𝑦 ∈
ℂ) |
| 118 | | npcan1 11670 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℂ → ((𝑦 − 1) + 1) = 𝑦) |
| 119 | 116, 117,
118 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (1..^𝑁) → ((𝑦 − 1) + 1) = 𝑦) |
| 120 | 119 | oveq1d 7428 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (1..^𝑁) → (((𝑦 − 1) + 1) mod 𝑁) = (𝑦 mod 𝑁)) |
| 121 | | elfzo1 13734 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ (1..^𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁)) |
| 122 | | nnre 12255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) |
| 123 | 122, 76 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑦 ∈ ℝ ∧ 𝑁 ∈
ℝ+)) |
| 124 | 123 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (𝑦 ∈ ℝ ∧ 𝑁 ∈
ℝ+)) |
| 125 | | nnnn0 12516 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℕ0) |
| 126 | 125 | nn0ge0d 12573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑦 ∈ ℕ → 0 ≤
𝑦) |
| 127 | 126 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑦 ∈ ℕ ∧ 𝑦 < 𝑁) → (0 ≤ 𝑦 ∧ 𝑦 < 𝑁)) |
| 128 | 127 | 3adant2 1131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (0 ≤ 𝑦 ∧ 𝑦 < 𝑁)) |
| 129 | 124, 128 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < 𝑁))) |
| 130 | 121, 129 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ (1..^𝑁) → ((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < 𝑁))) |
| 131 | | modid 13918 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
∧ (0 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝑦 mod 𝑁) = 𝑦) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ∈ (1..^𝑁) → (𝑦 mod 𝑁) = 𝑦) |
| 133 | 120, 132 | eqtrd 2769 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1..^𝑁) → (((𝑦 − 1) + 1) mod 𝑁) = 𝑦) |
| 134 | 133 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 − 1) + 1) mod 𝑁) = 𝑦) |
| 135 | 134 | eqcomd 2740 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → 𝑦 = (((𝑦 − 1) + 1) mod 𝑁)) |
| 136 | 135 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → 〈0, 𝑦〉 = 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉) |
| 137 | | 1red 11244 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ ℕ → 1 ∈
ℝ) |
| 138 | 122, 137 | resubcld 11673 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → (𝑦 − 1) ∈
ℝ) |
| 139 | 138, 76 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑦 − 1) ∈ ℝ ∧
𝑁 ∈
ℝ+)) |
| 140 | 139 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → ((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈
ℝ+)) |
| 141 | | nnm1ge0 12669 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ ℕ → 0 ≤
(𝑦 −
1)) |
| 142 | 141 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 0 ≤ (𝑦 − 1)) |
| 143 | 138 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (𝑦 − 1) ∈ ℝ) |
| 144 | 122 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑦 ∈ ℝ) |
| 145 | | nnre 12255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ) |
| 146 | 145 | 3ad2ant2 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑁 ∈ ℝ) |
| 147 | 122 | ltm1d 12182 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ ℕ → (𝑦 − 1) < 𝑦) |
| 148 | 147 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (𝑦 − 1) < 𝑦) |
| 149 | | simp3 1138 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → 𝑦 < 𝑁) |
| 150 | 143, 144,
146, 148, 149 | lttrd 11404 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (𝑦 − 1) < 𝑁) |
| 151 | 140, 142,
150 | jca32 515 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑦 < 𝑁) → (((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
∧ (0 ≤ (𝑦 − 1)
∧ (𝑦 − 1) <
𝑁))) |
| 152 | 121, 151 | sylbi 217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (1..^𝑁) → (((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
∧ (0 ≤ (𝑦 − 1)
∧ (𝑦 − 1) <
𝑁))) |
| 153 | 152 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → (((𝑦 − 1) ∈ ℝ ∧ 𝑁 ∈ ℝ+)
∧ (0 ≤ (𝑦 − 1)
∧ (𝑦 − 1) <
𝑁))) |
| 154 | | modid 13918 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑦 − 1) ∈ ℝ ∧
𝑁 ∈
ℝ+) ∧ (0 ≤ (𝑦 − 1) ∧ (𝑦 − 1) < 𝑁)) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1)) |
| 155 | 153, 154 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → ((𝑦 − 1) mod 𝑁) = (𝑦 − 1)) |
| 156 | 155 | opeq2d 4860 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → 〈0, ((𝑦 − 1) mod 𝑁)〉 = 〈0, (𝑦 − 1)〉) |
| 157 | 136, 156 | preq12d 4721 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (((𝑦 − 1) + 1) mod 𝑁)〉, 〈0, (𝑦 − 1)〉}) |
| 158 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . 19
⊢ {〈0,
(((𝑦 − 1) + 1) mod
𝑁)〉, 〈0, (𝑦 − 1)〉} = {〈0,
(𝑦 − 1)〉,
〈0, (((𝑦 − 1) +
1) mod 𝑁)〉} |
| 159 | 157, 158 | eqtrdi 2785 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉}) |
| 160 | 159 | 3mix1d 1336 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈0, (((𝑦 − 1) + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, (𝑦 − 1)〉, 〈1,
(𝑦 − 1)〉} ∨
{〈0, 𝑦〉, 〈0,
((𝑦 − 1) mod 𝑁)〉} = {〈1, (𝑦 − 1)〉, 〈1,
(((𝑦 − 1) + 𝐾) mod 𝑁)〉})) |
| 161 | 99, 115, 160 | rspcedvd 3607 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (1..^𝑁)) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})) |
| 162 | 161 | expcom 413 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (1..^𝑁) → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 163 | 95, 162 | jaoi 857 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 0 ∨ 𝑦 ∈ (1..^𝑁)) → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 164 | 46, 163 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0..^𝑁) → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 165 | 164 | impcom 407 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})) |
| 166 | | gpgedgvtx0.e |
. . . . . . . . . . . . . . 15
⊢ 𝐸 = (Edg‘𝐺) |
| 167 | 1, 2, 3, 166 | gpgedgel 47980 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ↔ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 168 | 1, 2, 3, 166 | gpgedgel 47980 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ({〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ↔ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 169 | 1, 2, 3, 166 | gpgedgel 47980 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → ({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸 ↔ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}))) |
| 170 | 167, 168,
169 | 3anbi123d 1437 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸) ↔ (∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ∧ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ∧ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})))) |
| 171 | 170 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → (({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸) ↔ (∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ∧ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈1, 𝑦〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉}) ∧ ∃𝑧 ∈ (0..^𝑁)({〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈0, ((𝑧 + 1) mod 𝑁)〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈0, 𝑧〉, 〈1, 𝑧〉} ∨ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} = {〈1, 𝑧〉, 〈1, ((𝑧 + 𝐾) mod 𝑁)〉})))) |
| 172 | 36, 45, 165, 171 | mpbir3and 1342 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑦 ∈ (0..^𝑁)) → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸)) |
| 173 | 172 | adantrl 716 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸)) |
| 174 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 〈0, 𝑦〉 → 𝑋 = 〈0, 𝑦〉) |
| 175 | | c0ex 11237 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
V |
| 176 | 175, 9 | op2ndd 8007 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 = 〈0, 𝑦〉 → (2nd ‘𝑋) = 𝑦) |
| 177 | 176 | oveq1d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 〈0, 𝑦〉 → ((2nd ‘𝑋) + 1) = (𝑦 + 1)) |
| 178 | 177 | oveq1d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 〈0, 𝑦〉 → (((2nd ‘𝑋) + 1) mod 𝑁) = ((𝑦 + 1) mod 𝑁)) |
| 179 | 178 | opeq2d 4860 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 〈0, 𝑦〉 → 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 = 〈0, ((𝑦 + 1) mod 𝑁)〉) |
| 180 | 174, 179 | preq12d 4721 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈0, 𝑦〉 → {𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉}) |
| 181 | 180 | eleq1d 2818 |
. . . . . . . . . . 11
⊢ (𝑋 = 〈0, 𝑦〉 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ↔ {〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸)) |
| 182 | 176 | opeq2d 4860 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 〈0, 𝑦〉 → 〈1, (2nd
‘𝑋)〉 = 〈1,
𝑦〉) |
| 183 | 174, 182 | preq12d 4721 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈0, 𝑦〉 → {𝑋, 〈1, (2nd ‘𝑋)〉} = {〈0, 𝑦〉, 〈1, 𝑦〉}) |
| 184 | 183 | eleq1d 2818 |
. . . . . . . . . . 11
⊢ (𝑋 = 〈0, 𝑦〉 → ({𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ↔ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸)) |
| 185 | 176 | oveq1d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 = 〈0, 𝑦〉 → ((2nd ‘𝑋) − 1) = (𝑦 − 1)) |
| 186 | 185 | oveq1d 7428 |
. . . . . . . . . . . . . 14
⊢ (𝑋 = 〈0, 𝑦〉 → (((2nd ‘𝑋) − 1) mod 𝑁) = ((𝑦 − 1) mod 𝑁)) |
| 187 | 186 | opeq2d 4860 |
. . . . . . . . . . . . 13
⊢ (𝑋 = 〈0, 𝑦〉 → 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 = 〈0, ((𝑦 − 1) mod 𝑁)〉) |
| 188 | 174, 187 | preq12d 4721 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈0, 𝑦〉 → {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} = {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉}) |
| 189 | 188 | eleq1d 2818 |
. . . . . . . . . . 11
⊢ (𝑋 = 〈0, 𝑦〉 → ({𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸 ↔ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸)) |
| 190 | 181, 184,
189 | 3anbi123d 1437 |
. . . . . . . . . 10
⊢ (𝑋 = 〈0, 𝑦〉 → (({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸) ↔ ({〈0, 𝑦〉, 〈0, ((𝑦 + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈1, 𝑦〉} ∈ 𝐸 ∧ {〈0, 𝑦〉, 〈0, ((𝑦 − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 191 | 173, 190 | syl5ibrcom 247 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = 〈0, 𝑦〉 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 192 | 191 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑥 = 0) → (𝑋 = 〈0, 𝑦〉 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 193 | 15, 192 | sylbid 240 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑥 = 0) → (𝑋 = 〈𝑥, 𝑦〉 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 194 | 193 | impancom 451 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑋 = 〈𝑥, 𝑦〉) → (𝑥 = 0 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 195 | 12, 194 | sylbid 240 |
. . . . 5
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑋 = 〈𝑥, 𝑦〉) → ((1st ‘𝑋) = 0 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸))) |
| 196 | 195 | ex 412 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = 〈𝑥, 𝑦〉 → ((1st ‘𝑋) = 0 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)))) |
| 197 | 196 | rexlimdvva 3200 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → ((1st ‘𝑋) = 0 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)))) |
| 198 | 5, 197 | sylbid 240 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → ({𝑋, 〈0, (((2nd ‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)))) |
| 199 | 198 | imp32 418 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → ({𝑋, 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉} ∈ 𝐸 ∧ {𝑋, 〈1, (2nd ‘𝑋)〉} ∈ 𝐸 ∧ {𝑋, 〈0, (((2nd ‘𝑋) − 1) mod 𝑁)〉} ∈ 𝐸)) |