| Step | Hyp | Ref
| Expression |
| 1 | | 5eluz3 12909 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘3) |
| 2 | | eleq1 2821 |
. . . . . 6
⊢ (𝑁 = 5 → (𝑁 ∈ (ℤ≥‘3)
↔ 5 ∈ (ℤ≥‘3))) |
| 3 | 1, 2 | mpbiri 258 |
. . . . 5
⊢ (𝑁 = 5 → 𝑁 ∈
(ℤ≥‘3)) |
| 4 | 3 | anim1i 615 |
. . . 4
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽)) |
| 5 | | eqid 2734 |
. . . . 5
⊢
(0..^𝑁) = (0..^𝑁) |
| 6 | | gpgnbgr.j |
. . . . 5
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| 7 | | gpgnbgr.g |
. . . . 5
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| 8 | | gpgnbgr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 9 | 5, 6, 7, 8 | gpgvtxel 47978 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉)) |
| 10 | 4, 9 | syl 17 |
. . 3
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉)) |
| 11 | 10 | biimp3a 1470 |
. 2
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉) |
| 12 | | elpri 4629 |
. . . . . . 7
⊢ (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1)) |
| 13 | | opeq1 4853 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → 〈𝑎, 𝑏〉 = 〈0, 𝑏〉) |
| 14 | 13 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈0, 𝑏〉)) |
| 15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈0, 𝑏〉)) |
| 16 | | c0ex 11237 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
| 17 | | vex 3467 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
| 18 | 16, 17 | op1std 8006 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈0, 𝑏〉 → (1st ‘𝑋) = 0) |
| 19 | | 4z 12634 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ∈
ℤ |
| 20 | | 5nn 12334 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℕ |
| 21 | 20 | nnzi 12624 |
. . . . . . . . . . . . . . . . 17
⊢ 5 ∈
ℤ |
| 22 | | 4re 12332 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℝ |
| 23 | | 5re 12335 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℝ |
| 24 | | 4lt5 12425 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 <
5 |
| 25 | 22, 23, 24 | ltleii 11366 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ≤
5 |
| 26 | | eluz2 12866 |
. . . . . . . . . . . . . . . . 17
⊢ (5 ∈
(ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 5 ∈
ℤ ∧ 4 ≤ 5)) |
| 27 | 19, 21, 25, 26 | mpbir3an 1341 |
. . . . . . . . . . . . . . . 16
⊢ 5 ∈
(ℤ≥‘4) |
| 28 | | eleq1 2821 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 = 5 → (𝑁 ∈ (ℤ≥‘4)
↔ 5 ∈ (ℤ≥‘4))) |
| 29 | 27, 28 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 = 5 → 𝑁 ∈
(ℤ≥‘4)) |
| 30 | | gpgnbgr.u |
. . . . . . . . . . . . . . . 16
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| 31 | | gpgnbgr.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐺) |
| 32 | 6, 7, 8, 30, 31 | gpg5nbgrvtx03star 48009 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
| 33 | 29, 32 | sylanl1 680 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
| 34 | 33 | exp43 436 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 5 → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))))) |
| 35 | 34 | 3imp 1110 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 36 | 18, 35 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 37 | 36 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 38 | 15, 37 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 39 | 38 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 0 → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 40 | | opeq1 4853 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → 〈𝑎, 𝑏〉 = 〈1, 𝑏〉) |
| 41 | 40 | eqeq2d 2745 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈1, 𝑏〉)) |
| 42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈1, 𝑏〉)) |
| 43 | | 1ex 11239 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
| 44 | 43, 17 | op1std 8006 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈1, 𝑏〉 → (1st ‘𝑋) = 1) |
| 45 | 6, 7, 8, 30 | gpg3nbgrvtx1 48007 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
3) |
| 46 | 3, 45 | sylanl1 680 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
3) |
| 47 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 |
| 48 | 6 | eleq2i 2825 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 49 | 48 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
| 50 | | gpgusgra 47985 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
| 51 | 7, 50 | eqeltrid 2837 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈
USGraph) |
| 52 | 3, 49, 51 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → 𝐺 ∈ USGraph) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝐺 ∈ USGraph) |
| 54 | 31 | usgredgne 29152 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) → 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) |
| 55 | 54 | neneqd 2936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) |
| 56 | 55 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉)) |
| 57 | 53, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉)) |
| 58 | 47, 57 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) |
| 59 | | df-nel 3036 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ ¬ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) |
| 60 | 58, 59 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 61 | | fvexd 6901 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → (2nd
‘𝑋) ∈
V) |
| 62 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem1 48000 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ V) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
| 63 | 61, 62 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
| 64 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → 𝑋 ∈ 𝑉) |
| 65 | 4, 64 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉)) |
| 66 | 5, 6, 7, 8 | gpgvtxel2 47979 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
| 67 | | elfzoelz 13681 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑋) ∈ (0..^𝑁) → (2nd ‘𝑋) ∈
ℤ) |
| 68 | 65, 66, 67 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (2nd
‘𝑋) ∈
ℤ) |
| 69 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem2 48001 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ ℤ) →
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 70 | 68, 69 | syldan 591 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 71 | | opex 5449 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ∈ V |
| 72 | | opex 5449 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈0,
(2nd ‘𝑋)〉 ∈ V |
| 73 | | opex 5449 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ∈
V |
| 74 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉}) |
| 75 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 77 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉}) |
| 78 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
| 80 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉}) |
| 81 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 83 | 71, 72, 73, 76, 79, 82 | raltp 4685 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 84 | 60, 63, 70, 83 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸) |
| 85 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} |
| 86 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
| 87 | 85, 86 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
| 88 | 63, 87 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 89 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉 |
| 90 | 31 | usgredgne 29152 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) → 〈0,
(2nd ‘𝑋)〉 ≠ 〈0, (2nd
‘𝑋)〉) |
| 91 | 90 | neneqd 2936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉) |
| 92 | 91 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈0, (2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉)) |
| 93 | 53, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉)) |
| 94 | 89, 93 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) |
| 95 | | df-nel 3036 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, (2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ ¬ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) |
| 96 | 94, 95 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
| 97 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem3 48002 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ V) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 98 | 61, 97 | sylan2 593 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 99 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈0, (2nd
‘𝑋)〉, 𝑦} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉}) |
| 100 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 102 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉}) |
| 103 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈0, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
| 105 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈0, (2nd
‘𝑋)〉, 𝑦} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
| 106 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} → ({〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 108 | 71, 72, 73, 101, 104, 107 | raltp 4685 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ ({〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸 ∧ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 109 | 88, 96, 98, 108 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸) |
| 110 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} |
| 111 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 112 | 110, 111 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 113 | 70, 112 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 114 | | prcom 4712 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈0,
(2nd ‘𝑋)〉} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} |
| 115 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} =
{〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 116 | 114, 115 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 117 | 98, 116 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸) |
| 118 | | eqid 2734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 |
| 119 | 31 | usgredgne 29152 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) → 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ≠ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉) |
| 120 | 119 | neneqd 2936 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) → ¬ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉) |
| 121 | 120 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉)) |
| 122 | 53, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉)) |
| 123 | 118, 122 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) |
| 124 | | df-nel 3036 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ ¬ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸) |
| 125 | 123, 124 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸) |
| 126 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉}) |
| 127 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 129 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉}) |
| 130 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
| 131 | 129, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
| 132 | | preq2 4714 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉}) |
| 133 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 135 | 71, 72, 73, 128, 131, 134 | raltp 4685 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
| 136 | 113, 117,
125, 135 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸) |
| 137 | | preq1 4713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦}) |
| 138 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 140 | 139 | ralbidv 3165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 141 | | preq1 4713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
{𝑥, 𝑦} = {〈0, (2nd ‘𝑋)〉, 𝑦}) |
| 142 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈0, (2nd ‘𝑋)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 144 | 143 | ralbidv 3165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
(∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸)) |
| 145 | | preq1 4713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦}) |
| 146 | | neleq1 3041 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 147 | 145, 146 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 148 | 147 | ralbidv 3165 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 149 | 71, 72, 73, 140, 144, 148 | raltp 4685 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
| 150 | 84, 109, 136, 149 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑥 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸) |
| 151 | 6, 7, 8, 30 | gpgnbgrvtx1 48004 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
| 152 | 3, 151 | sylanl1 680 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
| 153 | 152 | raleqdv 3309 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
| 154 | 152, 153 | raleqbidv 3329 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
| 155 | 150, 154 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) |
| 156 | 46, 155 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
| 157 | 156 | exp43 436 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 5 → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))))) |
| 158 | 157 | 3imp 1110 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 159 | 44, 158 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 160 | 159 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 161 | 42, 160 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 162 | 161 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 1 → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 163 | 39, 162 | jaoi 857 |
. . . . . . 7
⊢ ((𝑎 = 0 ∨ 𝑎 = 1) → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 164 | 12, 163 | syl 17 |
. . . . . 6
⊢ (𝑎 ∈ {0, 1} → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 165 | 164 | impcom 407 |
. . . . 5
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 166 | 165 | a1d 25 |
. . . 4
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑏 ∈ (0..^𝑁) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 167 | 166 | expimpd 453 |
. . 3
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^𝑁)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
| 168 | 167 | rexlimdvv 3199 |
. 2
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
| 169 | 11, 168 | mpd 15 |
1
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |