Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgr3star Structured version   Visualization version   GIF version

Theorem gpg5nbgr3star 48085
Description: In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Petersen graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48093. (Contributed by AV, 8-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
gpgnbgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgr3star ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑋   𝑥,𝐸,𝑦
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem gpg5nbgr3star
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12803 . . . . . 6 5 ∈ (ℤ‘3)
2 eleq1 2816 . . . . . 6 (𝑁 = 5 → (𝑁 ∈ (ℤ‘3) ↔ 5 ∈ (ℤ‘3)))
31, 2mpbiri 258 . . . . 5 (𝑁 = 5 → 𝑁 ∈ (ℤ‘3))
43anim1i 615 . . . 4 ((𝑁 = 5 ∧ 𝐾𝐽) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
5 eqid 2729 . . . . 5 (0..^𝑁) = (0..^𝑁)
6 gpgnbgr.j . . . . 5 𝐽 = (1..^(⌈‘(𝑁 / 2)))
7 gpgnbgr.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
8 gpgnbgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
95, 6, 7, 8gpgvtxel 48051 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩))
104, 9syl 17 . . 3 ((𝑁 = 5 ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩))
1110biimp3a 1471 . 2 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩)
12 elpri 4603 . . . . . . 7 (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1))
13 opeq1 4827 . . . . . . . . . . . 12 (𝑎 = 0 → ⟨𝑎, 𝑏⟩ = ⟨0, 𝑏⟩)
1413eqeq2d 2740 . . . . . . . . . . 11 (𝑎 = 0 → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨0, 𝑏⟩))
1514adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨0, 𝑏⟩))
16 c0ex 11128 . . . . . . . . . . . . 13 0 ∈ V
17 vex 3442 . . . . . . . . . . . . 13 𝑏 ∈ V
1816, 17op1std 7941 . . . . . . . . . . . 12 (𝑋 = ⟨0, 𝑏⟩ → (1st𝑋) = 0)
19 4z 12528 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
20 5nn 12233 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ
2120nnzi 12518 . . . . . . . . . . . . . . . . 17 5 ∈ ℤ
22 4re 12231 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
23 5re 12234 . . . . . . . . . . . . . . . . . 18 5 ∈ ℝ
24 4lt5 12319 . . . . . . . . . . . . . . . . . 18 4 < 5
2522, 23, 24ltleii 11258 . . . . . . . . . . . . . . . . 17 4 ≤ 5
26 eluz2 12760 . . . . . . . . . . . . . . . . 17 (5 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 5 ∈ ℤ ∧ 4 ≤ 5))
2719, 21, 25, 26mpbir3an 1342 . . . . . . . . . . . . . . . 16 5 ∈ (ℤ‘4)
28 eleq1 2816 . . . . . . . . . . . . . . . 16 (𝑁 = 5 → (𝑁 ∈ (ℤ‘4) ↔ 5 ∈ (ℤ‘4)))
2927, 28mpbiri 258 . . . . . . . . . . . . . . 15 (𝑁 = 5 → 𝑁 ∈ (ℤ‘4))
30 gpgnbgr.u . . . . . . . . . . . . . . . 16 𝑈 = (𝐺 NeighbVtx 𝑋)
31 gpgnbgr.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
326, 7, 8, 30, 31gpg5nbgrvtx03star 48084 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
3329, 32sylanl1 680 . . . . . . . . . . . . . 14 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
3433exp43 436 . . . . . . . . . . . . 13 (𝑁 = 5 → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 0 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))))
35343imp 1110 . . . . . . . . . . . 12 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 0 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3618, 35syl5 34 . . . . . . . . . . 11 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨0, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3736adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨0, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3815, 37sylbid 240 . . . . . . . . 9 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3938ex 412 . . . . . . . 8 (𝑎 = 0 → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
40 opeq1 4827 . . . . . . . . . . . 12 (𝑎 = 1 → ⟨𝑎, 𝑏⟩ = ⟨1, 𝑏⟩)
4140eqeq2d 2740 . . . . . . . . . . 11 (𝑎 = 1 → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨1, 𝑏⟩))
4241adantr 480 . . . . . . . . . 10 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨1, 𝑏⟩))
43 1ex 11130 . . . . . . . . . . . . 13 1 ∈ V
4443, 17op1std 7941 . . . . . . . . . . . 12 (𝑋 = ⟨1, 𝑏⟩ → (1st𝑋) = 1)
456, 7, 8, 30gpg3nbgrvtx1 48082 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
463, 45sylanl1 680 . . . . . . . . . . . . . . 15 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
47 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩
486eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
4948biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
50 gpgusgra 48061 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
517, 50eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
523, 49, 51syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 = 5 ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝐺 ∈ USGraph)
5431usgredgne 29170 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
5554neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
5655ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
5753, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
5847, 57mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸)
59 df-nel 3030 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸)
6058, 59sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
61 fvexd 6841 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑉 ∧ (1st𝑋) = 1) → (2nd𝑋) ∈ V)
626, 7, 8, 31gpg5nbgrvtx13starlem1 48075 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ V) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
6361, 62sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
64 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉 ∧ (1st𝑋) = 1) → 𝑋𝑉)
654, 64anim12i 613 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
665, 6, 7, 8gpgvtxel2 48052 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
67 elfzoelz 13581 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
6865, 66, 673syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (2nd𝑋) ∈ ℤ)
696, 7, 8, 31gpg5nbgrvtx13starlem2 48076 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ ℤ) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
7068, 69syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
71 opex 5411 . . . . . . . . . . . . . . . . . . 19 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V
72 opex 5411 . . . . . . . . . . . . . . . . . . 19 ⟨0, (2nd𝑋)⟩ ∈ V
73 opex 5411 . . . . . . . . . . . . . . . . . . 19 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V
74 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
75 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
77 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩})
78 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
80 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
81 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8371, 72, 73, 76, 79, 82raltp 4659 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8460, 63, 70, 83syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
85 prcom 4686 . . . . . . . . . . . . . . . . . . . 20 {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩}
86 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
8785, 86ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
8863, 87sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
89 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩
9031usgredgne 29170 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸) → ⟨0, (2nd𝑋)⟩ ≠ ⟨0, (2nd𝑋)⟩)
9190neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸) → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩)
9291ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩))
9353, 92syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩))
9489, 93mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸)
95 df-nel 3030 . . . . . . . . . . . . . . . . . . 19 ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸)
9694, 95sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
976, 7, 8, 31gpg5nbgrvtx13starlem3 48077 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ V) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
9861, 97sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
99 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
100 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10199, 100syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
102 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩})
103 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
104102, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
105 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
106 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10871, 72, 73, 101, 104, 107raltp 4659 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10988, 96, 98, 108syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸)
110 prcom 4686 . . . . . . . . . . . . . . . . . . . 20 {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}
111 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
112110, 111ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
11370, 112sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
114 prcom 4686 . . . . . . . . . . . . . . . . . . . 20 {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}
115 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
116114, 115ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
11798, 116sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
118 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩
11931usgredgne 29170 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
120119neneqd 2930 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
121120ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
12253, 121syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
123118, 122mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸)
124 df-nel 3030 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸)
125123, 124sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
126 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
127 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
128126, 127syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
129 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩})
130 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
131129, 130syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
132 preq2 4688 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
133 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
13571, 72, 73, 128, 131, 134raltp 4659 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
136113, 117, 125, 135syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
137 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦})
138 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
140139ralbidv 3152 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
141 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨0, (2nd𝑋)⟩ → {𝑥, 𝑦} = {⟨0, (2nd𝑋)⟩, 𝑦})
142 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨0, (2nd𝑋)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨0, (2nd𝑋)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
144143ralbidv 3152 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨0, (2nd𝑋)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
145 preq1 4687 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦})
146 neleq1 3035 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
148147ralbidv 3152 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
14971, 72, 73, 140, 144, 148raltp 4659 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
15084, 109, 136, 149syl3anbrc 1344 . . . . . . . . . . . . . . . 16 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸)
1516, 7, 8, 30gpgnbgrvtx1 48079 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
1523, 151sylanl1 680 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
153152raleqdv 3290 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (∀𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
154152, 153raleqbidv 3310 . . . . . . . . . . . . . . . 16 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
155150, 154mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)
15646, 155jca 511 . . . . . . . . . . . . . 14 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
157156exp43 436 . . . . . . . . . . . . 13 (𝑁 = 5 → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 1 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))))
1581573imp 1110 . . . . . . . . . . . 12 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 1 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
15944, 158syl5 34 . . . . . . . . . . 11 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨1, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
160159adantl 481 . . . . . . . . . 10 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨1, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
16142, 160sylbid 240 . . . . . . . . 9 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
162161ex 412 . . . . . . . 8 (𝑎 = 1 → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
16339, 162jaoi 857 . . . . . . 7 ((𝑎 = 0 ∨ 𝑎 = 1) → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
16412, 163syl 17 . . . . . 6 (𝑎 ∈ {0, 1} → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
165164impcom 407 . . . . 5 (((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
166165a1d 25 . . . 4 (((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑏 ∈ (0..^𝑁) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
167166expimpd 453 . . 3 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^𝑁)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
168167rexlimdvv 3185 . 2 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
16911, 168mpd 15 1 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wnel 3029  wral 3044  wrex 3053  Vcvv 3438  {cpr 4581  {ctp 4583  cop 4585   class class class wbr 5095  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cmin 11366   / cdiv 11796  2c2 12202  3c3 12203  4c4 12204  5c5 12205  cz 12490  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  chash 14256  Vtxcvtx 28960  Edgcedg 29011  USGraphcusgr 29113   NeighbVtx cnbgr 29296   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-ico 13273  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-upgr 29046  df-umgr 29047  df-usgr 29115  df-nbgr 29297  df-gpg 48045
This theorem is referenced by:  gpg5gricstgr3  48094
  Copyright terms: Public domain W3C validator