Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpg5nbgr3star Structured version   Visualization version   GIF version

Theorem gpg5nbgr3star 48010
Description: In a generalized Petersen graph G(N,K) of order 10 (𝑁 = 5), these are the Petersen graph G(5,2) and the 5-prism G(5,1), every vertex has exactly three (different) neighbors, and none of these neighbors are connected by an edge (i.e., the (closed) neighborhood of every vertex induces a subgraph which is isomorphic to a 3-star). This does not hold for every generalized Petersen graph: for example, in the 3-prism G(3,1) (see gpg31grim3prism TODO) and the Dürer graph G(6,2) there are vertices which have neighborhoods containing triangles. In general, all generalized Peterson graphs G(N,K) with 𝑁 = 3 · 𝐾 contain triangles, see gpg3kgrtriex 48018. (Contributed by AV, 8-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
gpgnbgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
gpg5nbgr3star ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑉   𝑦,𝑋   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉   𝑥,𝑋   𝑥,𝐸,𝑦
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem gpg5nbgr3star
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 5eluz3 12909 . . . . . 6 5 ∈ (ℤ‘3)
2 eleq1 2821 . . . . . 6 (𝑁 = 5 → (𝑁 ∈ (ℤ‘3) ↔ 5 ∈ (ℤ‘3)))
31, 2mpbiri 258 . . . . 5 (𝑁 = 5 → 𝑁 ∈ (ℤ‘3))
43anim1i 615 . . . 4 ((𝑁 = 5 ∧ 𝐾𝐽) → (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽))
5 eqid 2734 . . . . 5 (0..^𝑁) = (0..^𝑁)
6 gpgnbgr.j . . . . 5 𝐽 = (1..^(⌈‘(𝑁 / 2)))
7 gpgnbgr.g . . . . 5 𝐺 = (𝑁 gPetersenGr 𝐾)
8 gpgnbgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
95, 6, 7, 8gpgvtxel 47978 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩))
104, 9syl 17 . . 3 ((𝑁 = 5 ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩))
1110biimp3a 1470 . 2 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩)
12 elpri 4629 . . . . . . 7 (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1))
13 opeq1 4853 . . . . . . . . . . . 12 (𝑎 = 0 → ⟨𝑎, 𝑏⟩ = ⟨0, 𝑏⟩)
1413eqeq2d 2745 . . . . . . . . . . 11 (𝑎 = 0 → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨0, 𝑏⟩))
1514adantr 480 . . . . . . . . . 10 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨0, 𝑏⟩))
16 c0ex 11237 . . . . . . . . . . . . 13 0 ∈ V
17 vex 3467 . . . . . . . . . . . . 13 𝑏 ∈ V
1816, 17op1std 8006 . . . . . . . . . . . 12 (𝑋 = ⟨0, 𝑏⟩ → (1st𝑋) = 0)
19 4z 12634 . . . . . . . . . . . . . . . . 17 4 ∈ ℤ
20 5nn 12334 . . . . . . . . . . . . . . . . . 18 5 ∈ ℕ
2120nnzi 12624 . . . . . . . . . . . . . . . . 17 5 ∈ ℤ
22 4re 12332 . . . . . . . . . . . . . . . . . 18 4 ∈ ℝ
23 5re 12335 . . . . . . . . . . . . . . . . . 18 5 ∈ ℝ
24 4lt5 12425 . . . . . . . . . . . . . . . . . 18 4 < 5
2522, 23, 24ltleii 11366 . . . . . . . . . . . . . . . . 17 4 ≤ 5
26 eluz2 12866 . . . . . . . . . . . . . . . . 17 (5 ∈ (ℤ‘4) ↔ (4 ∈ ℤ ∧ 5 ∈ ℤ ∧ 4 ≤ 5))
2719, 21, 25, 26mpbir3an 1341 . . . . . . . . . . . . . . . 16 5 ∈ (ℤ‘4)
28 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑁 = 5 → (𝑁 ∈ (ℤ‘4) ↔ 5 ∈ (ℤ‘4)))
2927, 28mpbiri 258 . . . . . . . . . . . . . . 15 (𝑁 = 5 → 𝑁 ∈ (ℤ‘4))
30 gpgnbgr.u . . . . . . . . . . . . . . . 16 𝑈 = (𝐺 NeighbVtx 𝑋)
31 gpgnbgr.e . . . . . . . . . . . . . . . 16 𝐸 = (Edg‘𝐺)
326, 7, 8, 30, 31gpg5nbgrvtx03star 48009 . . . . . . . . . . . . . . 15 (((𝑁 ∈ (ℤ‘4) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
3329, 32sylanl1 680 . . . . . . . . . . . . . 14 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
3433exp43 436 . . . . . . . . . . . . 13 (𝑁 = 5 → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 0 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))))
35343imp 1110 . . . . . . . . . . . 12 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 0 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3618, 35syl5 34 . . . . . . . . . . 11 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨0, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3736adantl 481 . . . . . . . . . 10 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨0, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3815, 37sylbid 240 . . . . . . . . 9 ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
3938ex 412 . . . . . . . 8 (𝑎 = 0 → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
40 opeq1 4853 . . . . . . . . . . . 12 (𝑎 = 1 → ⟨𝑎, 𝑏⟩ = ⟨1, 𝑏⟩)
4140eqeq2d 2745 . . . . . . . . . . 11 (𝑎 = 1 → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨1, 𝑏⟩))
4241adantr 480 . . . . . . . . . 10 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ ↔ 𝑋 = ⟨1, 𝑏⟩))
43 1ex 11239 . . . . . . . . . . . . 13 1 ∈ V
4443, 17op1std 8006 . . . . . . . . . . . 12 (𝑋 = ⟨1, 𝑏⟩ → (1st𝑋) = 1)
456, 7, 8, 30gpg3nbgrvtx1 48007 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
463, 45sylanl1 680 . . . . . . . . . . . . . . 15 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
47 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩
486eleq2i 2825 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
4948biimpi 216 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾𝐽𝐾 ∈ (1..^(⌈‘(𝑁 / 2))))
50 gpgusgra 47985 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph)
517, 50eqeltrid 2837 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈ USGraph)
523, 49, 51syl2an 596 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 = 5 ∧ 𝐾𝐽) → 𝐺 ∈ USGraph)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝐺 ∈ USGraph)
5431usgredgne 29152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
5554neneqd 2936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩)
5655ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
5753, 56syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩))
5847, 57mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸)
59 df-nel 3036 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∈ 𝐸)
6058, 59sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
61 fvexd 6901 . . . . . . . . . . . . . . . . . . 19 ((𝑋𝑉 ∧ (1st𝑋) = 1) → (2nd𝑋) ∈ V)
626, 7, 8, 31gpg5nbgrvtx13starlem1 48000 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ V) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
6361, 62sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
64 simpl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉 ∧ (1st𝑋) = 1) → 𝑋𝑉)
654, 64anim12i 613 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉))
665, 6, 7, 8gpgvtxel2 47979 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (2nd𝑋) ∈ (0..^𝑁))
67 elfzoelz 13681 . . . . . . . . . . . . . . . . . . . 20 ((2nd𝑋) ∈ (0..^𝑁) → (2nd𝑋) ∈ ℤ)
6865, 66, 673syl 18 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (2nd𝑋) ∈ ℤ)
696, 7, 8, 31gpg5nbgrvtx13starlem2 48001 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ ℤ) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
7068, 69syldan 591 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
71 opex 5449 . . . . . . . . . . . . . . . . . . 19 ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ ∈ V
72 opex 5449 . . . . . . . . . . . . . . . . . . 19 ⟨0, (2nd𝑋)⟩ ∈ V
73 opex 5449 . . . . . . . . . . . . . . . . . . 19 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ∈ V
74 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
75 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
7674, 75syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
77 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩})
78 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
7977, 78syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
80 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
81 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8280, 81syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8371, 72, 73, 76, 79, 82raltp 4685 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
8460, 63, 70, 83syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
85 prcom 4712 . . . . . . . . . . . . . . . . . . . 20 {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩}
86 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
8785, 86ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
8863, 87sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
89 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩
9031usgredgne 29152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸) → ⟨0, (2nd𝑋)⟩ ≠ ⟨0, (2nd𝑋)⟩)
9190neneqd 2936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸) → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩)
9291ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩))
9353, 92syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸 → ¬ ⟨0, (2nd𝑋)⟩ = ⟨0, (2nd𝑋)⟩))
9489, 93mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸)
95 df-nel 3036 . . . . . . . . . . . . . . . . . . 19 ({⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ ¬ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∈ 𝐸)
9694, 95sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
976, 7, 8, 31gpg5nbgrvtx13starlem3 48002 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (2nd𝑋) ∈ V) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
9861, 97sylan2 593 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
99 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
100 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10199, 100syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
102 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩})
103 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
104102, 103syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
105 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
106 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨0, (2nd𝑋)⟩, 𝑦} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
107105, 106syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10871, 72, 73, 101, 104, 107raltp 4685 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨0, (2nd𝑋)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
10988, 96, 98, 108syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸)
110 prcom 4712 . . . . . . . . . . . . . . . . . . . 20 {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}
111 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
112110, 111ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
11370, 112sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸)
114 prcom 4712 . . . . . . . . . . . . . . . . . . . 20 {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}
115 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} = {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
116114, 115ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
11798, 116sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸)
118 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩
11931usgredgne 29152 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ ≠ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
120119neneqd 2936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ USGraph ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸) → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩)
121120ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝐺 ∈ USGraph → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
12253, 121syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸 → ¬ ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩))
123118, 122mt2i 137 . . . . . . . . . . . . . . . . . . 19 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ¬ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸)
124 df-nel 3036 . . . . . . . . . . . . . . . . . . 19 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸 ↔ ¬ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∈ 𝐸)
125123, 124sylibr 234 . . . . . . . . . . . . . . . . . 18 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸)
126 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩})
127 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
128126, 127syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸))
129 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨0, (2nd𝑋)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩})
130 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
131129, 130syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, (2nd𝑋)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸))
132 preq2 4714 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
133 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
134132, 133syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
13571, 72, 73, 128, 131, 134raltp 4685 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ↔ ({⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩} ∉ 𝐸 ∧ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} ∉ 𝐸))
136113, 117, 125, 135syl3anbrc 1343 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸)
137 preq1 4713 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦})
138 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
139137, 138syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
140139ralbidv 3165 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
141 preq1 4713 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨0, (2nd𝑋)⟩ → {𝑥, 𝑦} = {⟨0, (2nd𝑋)⟩, 𝑦})
142 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨0, (2nd𝑋)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
143141, 142syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨0, (2nd𝑋)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
144143ralbidv 3165 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨0, (2nd𝑋)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸))
145 preq1 4713 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → {𝑥, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦})
146 neleq1 3041 . . . . . . . . . . . . . . . . . . . 20 ({𝑥, 𝑦} = {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
147145, 146syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → ({𝑥, 𝑦} ∉ 𝐸 ↔ {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
148147ralbidv 3165 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩ → (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
14971, 72, 73, 140, 144, 148raltp 4685 . . . . . . . . . . . . . . . . 17 (∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨0, (2nd𝑋)⟩, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩, 𝑦} ∉ 𝐸))
15084, 109, 136, 149syl3anbrc 1343 . . . . . . . . . . . . . . . 16 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸)
1516, 7, 8, 30gpgnbgrvtx1 48004 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
1523, 151sylanl1 680 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑈 = {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩})
153152raleqdv 3309 . . . . . . . . . . . . . . . . 17 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (∀𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
154152, 153raleqbidv 3329 . . . . . . . . . . . . . . . 16 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩}∀𝑦 ∈ {⟨1, (((2nd𝑋) + 𝐾) mod 𝑁)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 𝐾) mod 𝑁)⟩} {𝑥, 𝑦} ∉ 𝐸))
155150, 154mpbird 257 . . . . . . . . . . . . . . 15 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)
15646, 155jca 511 . . . . . . . . . . . . . 14 (((𝑁 = 5 ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
157156exp43 436 . . . . . . . . . . . . 13 (𝑁 = 5 → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 1 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))))
1581573imp 1110 . . . . . . . . . . . 12 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 1 → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
15944, 158syl5 34 . . . . . . . . . . 11 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨1, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
160159adantl 481 . . . . . . . . . 10 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨1, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
16142, 160sylbid 240 . . . . . . . . 9 ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
162161ex 412 . . . . . . . 8 (𝑎 = 1 → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
16339, 162jaoi 857 . . . . . . 7 ((𝑎 = 0 ∨ 𝑎 = 1) → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
16412, 163syl 17 . . . . . 6 (𝑎 ∈ {0, 1} → ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
165164impcom 407 . . . . 5 (((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
166165a1d 25 . . . 4 (((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑏 ∈ (0..^𝑁) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
167166expimpd 453 . . 3 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^𝑁)) → (𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))))
168167rexlimdvv 3199 . 2 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = ⟨𝑎, 𝑏⟩ → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸)))
16911, 168mpd 15 1 ((𝑁 = 5 ∧ 𝐾𝐽𝑋𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥𝑈𝑦𝑈 {𝑥, 𝑦} ∉ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wnel 3035  wral 3050  wrex 3059  Vcvv 3463  {cpr 4608  {ctp 4610  cop 4612   class class class wbr 5123  cfv 6541  (class class class)co 7413  1st c1st 7994  2nd c2nd 7995  0cc0 11137  1c1 11138   + caddc 11140  cle 11278  cmin 11474   / cdiv 11902  2c2 12303  3c3 12304  4c4 12305  5c5 12306  cz 12596  cuz 12860  ..^cfzo 13676  cceil 13813   mod cmo 13891  chash 14352  Vtxcvtx 28942  Edgcedg 28993  USGraphcusgr 29095   NeighbVtx cnbgr 29278   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-dju 9923  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-rp 13017  df-ico 13375  df-fz 13530  df-fzo 13677  df-fl 13814  df-ceil 13815  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-dvds 16274  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-edgf 28935  df-vtx 28944  df-iedg 28945  df-edg 28994  df-upgr 29028  df-umgr 29029  df-usgr 29097  df-nbgr 29279  df-gpg 47973
This theorem is referenced by:  gpg5gricstgr3  48019
  Copyright terms: Public domain W3C validator