Step | Hyp | Ref
| Expression |
1 | | 5eluz3 12959 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘3) |
2 | | eleq1 2832 |
. . . . . 6
⊢ (𝑁 = 5 → (𝑁 ∈ (ℤ≥‘3)
↔ 5 ∈ (ℤ≥‘3))) |
3 | 1, 2 | mpbiri 258 |
. . . . 5
⊢ (𝑁 = 5 → 𝑁 ∈
(ℤ≥‘3)) |
4 | 3 | anim1i 614 |
. . . 4
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → (𝑁 ∈ (ℤ≥‘3)
∧ 𝐾 ∈ 𝐽)) |
5 | | eqid 2740 |
. . . . 5
⊢
(0..^𝑁) = (0..^𝑁) |
6 | | gpgnbgr.j |
. . . . 5
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
7 | | gpgnbgr.g |
. . . . 5
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
8 | | gpgnbgr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
9 | 5, 6, 7, 8 | gpgvtxel 47895 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉)) |
10 | 4, 9 | syl 17 |
. . 3
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉)) |
11 | 10 | biimp3a 1469 |
. 2
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉) |
12 | | elpri 4671 |
. . . . . . 7
⊢ (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1)) |
13 | | opeq1 4898 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → 〈𝑎, 𝑏〉 = 〈0, 𝑏〉) |
14 | 13 | eqeq2d 2751 |
. . . . . . . . . . 11
⊢ (𝑎 = 0 → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈0, 𝑏〉)) |
15 | 14 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈0, 𝑏〉)) |
16 | | c0ex 11287 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
17 | | vex 3492 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
18 | 16, 17 | op1std 8043 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈0, 𝑏〉 → (1st ‘𝑋) = 0) |
19 | | 4z 12683 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ∈
ℤ |
20 | | 5nn 12384 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℕ |
21 | 20 | nnzi 12673 |
. . . . . . . . . . . . . . . . 17
⊢ 5 ∈
ℤ |
22 | | 4re 12382 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 ∈
ℝ |
23 | | 5re 12385 |
. . . . . . . . . . . . . . . . . 18
⊢ 5 ∈
ℝ |
24 | | 4lt5 12475 |
. . . . . . . . . . . . . . . . . 18
⊢ 4 <
5 |
25 | 22, 23, 24 | ltleii 11416 |
. . . . . . . . . . . . . . . . 17
⊢ 4 ≤
5 |
26 | | eluz2 12916 |
. . . . . . . . . . . . . . . . 17
⊢ (5 ∈
(ℤ≥‘4) ↔ (4 ∈ ℤ ∧ 5 ∈
ℤ ∧ 4 ≤ 5)) |
27 | 19, 21, 25, 26 | mpbir3an 1341 |
. . . . . . . . . . . . . . . 16
⊢ 5 ∈
(ℤ≥‘4) |
28 | | eleq1 2832 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 = 5 → (𝑁 ∈ (ℤ≥‘4)
↔ 5 ∈ (ℤ≥‘4))) |
29 | 27, 28 | mpbiri 258 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 = 5 → 𝑁 ∈
(ℤ≥‘4)) |
30 | | gpgnbgr.u |
. . . . . . . . . . . . . . . 16
⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
31 | | gpgnbgr.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐺) |
32 | 6, 7, 8, 30, 31 | gpg5nbgrvtx03star 47923 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈
(ℤ≥‘4) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
33 | 29, 32 | sylanl1 679 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
34 | 33 | exp43 436 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 5 → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))))) |
35 | 34 | 3imp 1111 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
36 | 18, 35 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
37 | 36 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
38 | 15, 37 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝑎 = 0 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
39 | 38 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 0 → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
40 | | opeq1 4898 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → 〈𝑎, 𝑏〉 = 〈1, 𝑏〉) |
41 | 40 | eqeq2d 2751 |
. . . . . . . . . . 11
⊢ (𝑎 = 1 → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈1, 𝑏〉)) |
42 | 41 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 ↔ 𝑋 = 〈1, 𝑏〉)) |
43 | | 1ex 11289 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
44 | 43, 17 | op1std 8043 |
. . . . . . . . . . . 12
⊢ (𝑋 = 〈1, 𝑏〉 → (1st ‘𝑋) = 1) |
45 | 6, 7, 8, 30 | gpg3nbgrvtx1 47921 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
3) |
46 | 3, 45 | sylanl1 679 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
(♯‘𝑈) =
3) |
47 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 |
48 | 6 | eleq2i 2836 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐾 ∈ 𝐽 ↔ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
49 | 48 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ 𝐽 → 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) |
50 | | gpgusgra 47901 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → (𝑁 gPetersenGr 𝐾) ∈ USGraph) |
51 | 7, 50 | eqeltrid 2848 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ (1..^(⌈‘(𝑁 / 2)))) → 𝐺 ∈
USGraph) |
52 | 3, 49, 51 | syl2an 595 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) → 𝐺 ∈ USGraph) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝐺 ∈ USGraph) |
54 | 31 | usgredgne 29261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) → 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 ≠ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) |
55 | 54 | neneqd 2951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉) |
56 | 55 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉)) |
57 | 53, 56 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉)) |
58 | 47, 57 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) |
59 | | df-nel 3053 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ ¬ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∈ 𝐸) |
60 | 58, 59 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸) |
61 | | fvexd 6938 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → (2nd
‘𝑋) ∈
V) |
62 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem1 47914 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ V) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
63 | 61, 62 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
64 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1) → 𝑋 ∈ 𝑉) |
65 | 4, 64 | anim12i 612 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉)) |
66 | 5, 6, 7, 8 | gpgvtxel2 47896 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (2nd ‘𝑋) ∈ (0..^𝑁)) |
67 | | elfzoelz 13727 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((2nd ‘𝑋) ∈ (0..^𝑁) → (2nd ‘𝑋) ∈
ℤ) |
68 | 65, 66, 67 | 3syl 18 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (2nd
‘𝑋) ∈
ℤ) |
69 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem2 47915 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ ℤ) →
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
70 | 68, 69 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
71 | | opex 5485 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉 ∈ V |
72 | | opex 5485 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈0,
(2nd ‘𝑋)〉 ∈ V |
73 | | opex 5485 |
. . . . . . . . . . . . . . . . . . 19
⊢ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ∈
V |
74 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉}) |
75 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
77 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉}) |
78 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
80 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉}) |
81 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
83 | 71, 72, 73, 76, 79, 82 | raltp 4730 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ∧ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
84 | 60, 63, 70, 83 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸) |
85 | | prcom 4757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} |
86 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
87 | 85, 86 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
88 | 63, 87 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸) |
89 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉 |
90 | 31 | usgredgne 29261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) → 〈0,
(2nd ‘𝑋)〉 ≠ 〈0, (2nd
‘𝑋)〉) |
91 | 90 | neneqd 2951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉) |
92 | 91 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈0, (2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉)) |
93 | 53, 92 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸 → ¬ 〈0,
(2nd ‘𝑋)〉 = 〈0, (2nd
‘𝑋)〉)) |
94 | 89, 93 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) |
95 | | df-nel 3053 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈0, (2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ ¬ {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∈
𝐸) |
96 | 94, 95 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸) |
97 | 6, 7, 8, 31 | gpg5nbgrvtx13starlem3 47916 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (2nd ‘𝑋) ∈ V) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
98 | 61, 97 | sylan2 592 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
99 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈0, (2nd
‘𝑋)〉, 𝑦} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉}) |
100 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
102 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉}) |
103 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈0, (2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸)) |
105 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈0, (2nd
‘𝑋)〉, 𝑦} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
106 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈0, (2nd ‘𝑋)〉, 𝑦} = {〈0, (2nd ‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} → ({〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
107 | 105, 106 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
108 | 71, 72, 73, 101, 104, 107 | raltp 4730 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ↔ ({〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈0, (2nd
‘𝑋)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸 ∧ {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
109 | 88, 96, 98, 108 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸) |
110 | | prcom 4757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} |
111 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} = {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
112 | 110, 111 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
113 | 70, 112 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉} ∉ 𝐸) |
114 | | prcom 4757 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈0,
(2nd ‘𝑋)〉} = {〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} |
115 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} =
{〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
116 | 114, 115 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ↔ {〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸) |
117 | 98, 116 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈0,
(2nd ‘𝑋)〉} ∉ 𝐸) |
118 | | eqid 2740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 |
119 | 31 | usgredgne 29261 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) → 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 ≠ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉) |
120 | 119 | neneqd 2951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐺 ∈ USGraph ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) → ¬ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉) |
121 | 120 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐺 ∈ USGraph →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉)) |
122 | 53, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ({〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸 → ¬ 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉 = 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉)) |
123 | 118, 122 | mt2i 137 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ¬ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∈ 𝐸) |
124 | | df-nel 3053 |
. . . . . . . . . . . . . . . . . . 19
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸 ↔ ¬ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∈ 𝐸) |
125 | 123, 124 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸) |
126 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉}) |
127 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
129 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
{〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉}) |
130 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
131 | 129, 130 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, (2nd
‘𝑋)〉 →
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸)) |
132 | | preq2 4759 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉}) |
133 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢
({〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
134 | 132, 133 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
135 | 71, 72, 73, 128, 131, 134 | raltp 4730 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑦 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ↔ ({〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉} ∉ 𝐸 ∧ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉} ∉
𝐸 ∧ {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} ∉ 𝐸)) |
136 | 113, 117,
125, 135 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸) |
137 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → {𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦}) |
138 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
139 | 137, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
140 | 139 | ralbidv 3184 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉 → (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
141 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
{𝑥, 𝑦} = {〈0, (2nd ‘𝑋)〉, 𝑦}) |
142 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈0, (2nd ‘𝑋)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
143 | 141, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
({𝑥, 𝑦} ∉ 𝐸 ↔ {〈0, (2nd
‘𝑋)〉, 𝑦} ∉ 𝐸)) |
144 | 143 | ralbidv 3184 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈0, (2nd
‘𝑋)〉 →
(∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸)) |
145 | | preq1 4758 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → {𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦}) |
146 | | neleq1 3058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({𝑥, 𝑦} = {〈1, (((2nd ‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
147 | 145, 146 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → ({𝑥, 𝑦} ∉ 𝐸 ↔ {〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
148 | 147 | ralbidv 3184 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈1, (((2nd
‘𝑋) − 𝐾) mod 𝑁)〉 → (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
149 | 71, 72, 73, 140, 144, 148 | raltp 4730 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑥 ∈
{〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸 ↔ (∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈0,
(2nd ‘𝑋)〉, 𝑦} ∉ 𝐸 ∧ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉, 𝑦} ∉ 𝐸)) |
150 | 84, 109, 136, 149 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑥 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸) |
151 | 6, 7, 8, 30 | gpgnbgrvtx1 47918 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
152 | 3, 151 | sylanl1 679 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → 𝑈 = {〈1, (((2nd ‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}) |
153 | 152 | raleqdv 3334 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑦 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
154 | 152, 153 | raleqbidv 3354 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸 ↔ ∀𝑥 ∈ {〈1, (((2nd
‘𝑋) + 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉}∀𝑦 ∈ {〈1,
(((2nd ‘𝑋)
+ 𝐾) mod 𝑁)〉, 〈0, (2nd
‘𝑋)〉, 〈1,
(((2nd ‘𝑋)
− 𝐾) mod 𝑁)〉} {𝑥, 𝑦} ∉ 𝐸)) |
155 | 150, 154 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸) |
156 | 46, 155 | jca 511 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |
157 | 156 | exp43 436 |
. . . . . . . . . . . . 13
⊢ (𝑁 = 5 → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))))) |
158 | 157 | 3imp 1111 |
. . . . . . . . . . . 12
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 →
((♯‘𝑈) = 3
∧ ∀𝑥 ∈
𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
159 | 44, 158 | syl5 34 |
. . . . . . . . . . 11
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
160 | 159 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
161 | 42, 160 | sylbid 240 |
. . . . . . . . 9
⊢ ((𝑎 = 1 ∧ (𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
162 | 161 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 1 → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
163 | 39, 162 | jaoi 856 |
. . . . . . 7
⊢ ((𝑎 = 0 ∨ 𝑎 = 1) → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
164 | 12, 163 | syl 17 |
. . . . . 6
⊢ (𝑎 ∈ {0, 1} → ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
165 | 164 | impcom 407 |
. . . . 5
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
166 | 165 | a1d 25 |
. . . 4
⊢ (((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑎 ∈ {0, 1}) → (𝑏 ∈ (0..^𝑁) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
167 | 166 | expimpd 453 |
. . 3
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^𝑁)) → (𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)))) |
168 | 167 | rexlimdvv 3218 |
. 2
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^𝑁)𝑋 = 〈𝑎, 𝑏〉 → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸))) |
169 | 11, 168 | mpd 15 |
1
⊢ ((𝑁 = 5 ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((♯‘𝑈) = 3 ∧ ∀𝑥 ∈ 𝑈 ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∉ 𝐸)) |