| Step | Hyp | Ref
| Expression |
| 1 | | pgnbgreunbgr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 2 | 1 | nbgrcl 29268 |
. . . 4
⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ 𝑉) |
| 3 | | pgnbgreunbgr.n |
. . . 4
⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) |
| 4 | 2, 3 | eleq2s 2847 |
. . 3
⊢ (𝐾 ∈ 𝑁 → 𝑋 ∈ 𝑉) |
| 5 | 4 | 3ad2ant1 1133 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → 𝑋 ∈ 𝑉) |
| 6 | | 5eluz3 12848 |
. . . . . 6
⊢ 5 ∈
(ℤ≥‘3) |
| 7 | | pglem 48072 |
. . . . . 6
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 8 | | eqid 2730 |
. . . . . . 7
⊢ (0..^5) =
(0..^5) |
| 9 | | eqid 2730 |
. . . . . . 7
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 10 | | pgnbgreunbgr.g |
. . . . . . 7
⊢ 𝐺 = (5 gPetersenGr
2) |
| 11 | 8, 9, 10, 1 | gpgvtxel 48028 |
. . . . . 6
⊢ ((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) → (𝑋 ∈
𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = 〈𝑥, 𝑦〉)) |
| 12 | 6, 7, 11 | mp2an 692 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = 〈𝑥, 𝑦〉) |
| 13 | 12 | biimpi 216 |
. . . 4
⊢ (𝑋 ∈ 𝑉 → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = 〈𝑥, 𝑦〉) |
| 14 | 13 | adantl 481 |
. . 3
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = 〈𝑥, 𝑦〉) |
| 15 | | vex 3454 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 16 | 15 | elpr 4616 |
. . . . . . . 8
⊢ (𝑥 ∈ {0, 1} ↔ (𝑥 = 0 ∨ 𝑥 = 1)) |
| 17 | 6, 7 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (5 ∈
(ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) |
| 18 | | c0ex 11174 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
V |
| 19 | | vex 3454 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑦 ∈ V |
| 20 | 18, 19 | op1std 7980 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
| 21 | 20 | anim1ci 616 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) |
| 22 | 9, 10, 1, 3 | gpgnbgrvtx0 48055 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (𝑋 ∈ 𝑉 ∧ (1st
‘𝑋) = 0)) →
𝑁 = {〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) |
| 23 | 17, 21, 22 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → 𝑁 = {〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) |
| 24 | | eleq2 2818 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 = {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → (𝐾 ∈
𝑁 ↔ 𝐾 ∈ {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉})) |
| 25 | | eleq2 2818 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 = {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → (𝐿 ∈
𝑁 ↔ 𝐿 ∈ {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉})) |
| 26 | 24, 25 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 = {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → ((𝐾 ∈
𝑁 ∧ 𝐿 ∈ 𝑁) ↔ (𝐾 ∈ {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} ∧ 𝐿 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}))) |
| 27 | 26 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 = {〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝐾
∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ↔ (𝐾 ∈ {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} ∧ 𝐿 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}))) |
| 28 | | eltpi 4654 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐾 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → (𝐾 =
〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐾 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod
5)〉)) |
| 29 | | eltpi 4654 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐿 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → (𝐿 =
〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐿 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈0, (((2nd ‘𝑋) − 1) mod
5)〉)) |
| 30 | | pgnbgreunbgr.e |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝐸 = (Edg‘𝐺) |
| 31 | 10, 1, 30, 3 | pgnbgreunbgrlem5 48103 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 = 〈0, (((2nd
‘𝑋) + 1) mod 5)〉
∨ 𝐿 = 〈1,
(2nd ‘𝑋)〉 ∨ 𝐿 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉)
→ ((𝐾 = 〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉 ∨ 𝐾 =
〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉)
→ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 32 | 29, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝐿 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} → ((𝐾 =
〈0, (((2nd ‘𝑋) + 1) mod 5)〉 ∨ 𝐾 = 〈1, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈0, (((2nd ‘𝑋) − 1) mod 5)〉)
→ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 33 | 28, 32 | mpan9 506 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐾 ∈ {〈0,
(((2nd ‘𝑋)
+ 1) mod 5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} ∧ 𝐿 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝑋 =
〈0, 𝑦〉 ∧
𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 34 | 33 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ∈ {〈0, (((2nd
‘𝑋) + 1) mod
5)〉, 〈1, (2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} ∧ 𝐿 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝐾 ≠
𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 = {〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝐾
∈ {〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉} ∧ 𝐿 ∈
{〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝐾 ≠
𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 36 | 27, 35 | sylbid 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) ∧ 𝑁 = {〈0, (((2nd ‘𝑋) + 1) mod 5)〉, 〈1,
(2nd ‘𝑋)〉, 〈0, (((2nd
‘𝑋) − 1) mod
5)〉}) → ((𝐾
∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 37 | 23, 36 | mpdan 687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 38 | 37 | com12 32 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑋 = 〈0, 𝑦〉 ∧ 𝑋 ∈ 𝑉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 39 | 38 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑋 = 〈0, 𝑦〉 → (𝑋 ∈ 𝑉 → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 40 | 39 | com24 95 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋 ∈ 𝑉 → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 41 | 40 | expd 415 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾 ≠ 𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))))) |
| 42 | 41 | 3impia 1117 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 43 | 42 | expdimp 452 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋 ∈ 𝑉 → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 44 | 43 | com23 86 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 45 | 44 | imp31 417 |
. . . . . . . . . 10
⊢
(((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 46 | | opeq1 4839 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) |
| 47 | 46 | eqeq2d 2741 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 48 | 47 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → ((𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) ↔ (𝑋 = 〈0, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 49 | 45, 48 | imbitrrid 246 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 50 | | opeq1 4839 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) |
| 51 | 50 | eqeq2d 2741 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑥 = 1 ∧ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 53 | 1 | eleq2i 2821 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑋 ∈ 𝑉 ↔ 𝑋 ∈ (Vtx‘𝐺)) |
| 54 | 53 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Vtx‘𝐺)) |
| 55 | | 1ex 11176 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
V |
| 56 | 55, 19 | op1std 7980 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
| 57 | 54, 56 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → (𝑋 ∈ (Vtx‘𝐺) ∧ (1st ‘𝑋) = 1)) |
| 58 | | eqid 2730 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 59 | 9, 10, 58, 3 | gpgnbgrvtx1 48056 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) ∧ (𝑋 ∈
(Vtx‘𝐺) ∧
(1st ‘𝑋) =
1)) → 𝑁 = {〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) |
| 60 | 17, 57, 59 | sylancr 587 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → 𝑁 = {〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) |
| 61 | | eleq2 2818 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 = {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → (𝐾 ∈
𝑁 ↔ 𝐾 ∈ {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉})) |
| 62 | | eleq2 2818 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 = {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → (𝐿 ∈
𝑁 ↔ 𝐿 ∈ {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉})) |
| 63 | 61, 62 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 = {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → ((𝐾 ∈
𝑁 ∧ 𝐿 ∈ 𝑁) ↔ (𝐾 ∈ {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} ∧ 𝐿 ∈
{〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}))) |
| 64 | 63 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) ∧ 𝑁 = {〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝐾
∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ↔ (𝐾 ∈ {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} ∧ 𝐿 ∈
{〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}))) |
| 65 | | eltpi 4654 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐾 ∈ {〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → (𝐾 =
〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐾 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈1, (((2nd ‘𝑋) − 2) mod
5)〉)) |
| 66 | | eltpi 4654 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝐿 ∈ {〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → (𝐿 =
〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐿 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐿 = 〈1, (((2nd ‘𝑋) − 2) mod
5)〉)) |
| 67 | 10, 1, 30, 3 | pgnbgreunbgrlem4 48099 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐿 = 〈1, (((2nd
‘𝑋) + 2) mod 5)〉
∨ 𝐿 = 〈0,
(2nd ‘𝑋)〉 ∨ 𝐿 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉)
→ ((𝐾 = 〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉 ∨ 𝐾 =
〈0, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉)
→ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 68 | 66, 67 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝐿 ∈ {〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} → ((𝐾 =
〈1, (((2nd ‘𝑋) + 2) mod 5)〉 ∨ 𝐾 = 〈0, (2nd ‘𝑋)〉 ∨ 𝐾 = 〈1, (((2nd ‘𝑋) − 2) mod 5)〉)
→ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 69 | 65, 68 | mpan9 506 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐾 ∈ {〈1,
(((2nd ‘𝑋)
+ 2) mod 5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} ∧ 𝐿 ∈
{〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝑋
∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 70 | 69 | com12 32 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ∈ {〈1, (((2nd
‘𝑋) + 2) mod
5)〉, 〈0, (2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} ∧ 𝐿 ∈
{〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝐾 ≠
𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) ∧ 𝑁 = {〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝐾
∈ {〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉} ∧ 𝐿 ∈
{〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝐾 ≠
𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 72 | 64, 71 | sylbid 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) ∧ 𝑁 = {〈1, (((2nd ‘𝑋) + 2) mod 5)〉, 〈0,
(2nd ‘𝑋)〉, 〈1, (((2nd
‘𝑋) − 2) mod
5)〉}) → ((𝐾
∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 73 | 60, 72 | mpdan 687 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 74 | 73 | com12 32 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝑋 ∈ 𝑉 ∧ 𝑋 = 〈1, 𝑦〉) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 75 | 74 | expd 415 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑋 ∈ 𝑉 → (𝑋 = 〈1, 𝑦〉 → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 76 | 75 | com23 86 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝑋 = 〈1, 𝑦〉 → (𝑋 ∈ 𝑉 → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 77 | 76 | com24 95 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ((𝐾 ≠ 𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋 ∈ 𝑉 → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 78 | 77 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐾 ≠ 𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))))) |
| 79 | 78 | 3impia 1117 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 80 | 79 | expdimp 452 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋 ∈ 𝑉 → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 81 | 80 | com23 86 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋 ∈ 𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 82 | 81 | imp31 417 |
. . . . . . . . . . . 12
⊢
(((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 83 | 82 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝑥 = 1 ∧ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = 〈1, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 84 | 52, 83 | sylbid 240 |
. . . . . . . . . 10
⊢ ((𝑥 = 1 ∧ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 85 | 84 | ex 412 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 86 | 49, 85 | jaoi 857 |
. . . . . . . 8
⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → (((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 87 | 16, 86 | sylbi 217 |
. . . . . . 7
⊢ (𝑥 ∈ {0, 1} → (((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 88 | 87 | expd 415 |
. . . . . 6
⊢ (𝑥 ∈ {0, 1} → ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → (𝑦 ∈ (0..^5) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 89 | 88 | com12 32 |
. . . . 5
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → (𝑥 ∈ {0, 1} → (𝑦 ∈ (0..^5) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))))) |
| 90 | 89 | impd 410 |
. . . 4
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^5)) → (𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)))) |
| 91 | 90 | rexlimdvv 3194 |
. . 3
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = 〈𝑥, 𝑦〉 → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 92 | 14, 91 | mpd 15 |
. 2
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋 ∈ 𝑉) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) |
| 93 | 5, 92 | mpidan 689 |
1
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) |