Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem6 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem6 48128
Description: Lemma 6 for pgnbgreunbgr 48129. (Contributed by AV, 20-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem6 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))

Proof of Theorem pgnbgreunbgrlem6
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgnbgreunbgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
21nbgrcl 29299 . . . 4 (𝐾 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
3 pgnbgreunbgr.n . . . 4 𝑁 = (𝐺 NeighbVtx 𝑋)
42, 3eleq2s 2846 . . 3 (𝐾𝑁𝑋𝑉)
543ad2ant1 1133 . 2 ((𝐾𝑁𝐿𝑁𝐾𝐿) → 𝑋𝑉)
6 5eluz3 12803 . . . . . 6 5 ∈ (ℤ‘3)
7 pglem 48095 . . . . . 6 2 ∈ (1..^(⌈‘(5 / 2)))
8 eqid 2729 . . . . . . 7 (0..^5) = (0..^5)
9 eqid 2729 . . . . . . 7 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
10 pgnbgreunbgr.g . . . . . . 7 𝐺 = (5 gPetersenGr 2)
118, 9, 10, 1gpgvtxel 48051 . . . . . 6 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩))
126, 7, 11mp2an 692 . . . . 5 (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
1312biimpi 216 . . . 4 (𝑋𝑉 → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
1413adantl 481 . . 3 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
15 vex 3442 . . . . . . . . 9 𝑥 ∈ V
1615elpr 4604 . . . . . . . 8 (𝑥 ∈ {0, 1} ↔ (𝑥 = 0 ∨ 𝑥 = 1))
176, 7pm3.2i 470 . . . . . . . . . . . . . . . . . . . 20 (5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2))))
18 c0ex 11128 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ V
19 vex 3442 . . . . . . . . . . . . . . . . . . . . . 22 𝑦 ∈ V
2018, 19op1std 7941 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ⟨0, 𝑦⟩ → (1st𝑋) = 0)
2120anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → (𝑋𝑉 ∧ (1st𝑋) = 0))
229, 10, 1, 3gpgnbgrvtx0 48078 . . . . . . . . . . . . . . . . . . . 20 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})
2317, 21, 22sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})
24 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐾𝑁𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}))
25 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐿𝑁𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}))
2624, 25anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})))
2726adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})))
28 eltpi 4642 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩))
29 eltpi 4642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩))
30 pgnbgreunbgr.e . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐸 = (Edg‘𝐺)
3110, 1, 30, 3pgnbgreunbgrlem5 48127 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
3229, 31syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
3328, 32mpan9 506 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3433com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3534adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3627, 35sylbid 240 . . . . . . . . . . . . . . . . . . 19 (((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3723, 36mpdan 687 . . . . . . . . . . . . . . . . . 18 ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3837com12 32 . . . . . . . . . . . . . . . . 17 ((𝐾𝑁𝐿𝑁) → ((𝑋 = ⟨0, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
3938expd 415 . . . . . . . . . . . . . . . 16 ((𝐾𝑁𝐿𝑁) → (𝑋 = ⟨0, 𝑦⟩ → (𝑋𝑉 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
4039com24 95 . . . . . . . . . . . . . . 15 ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
4140expd 415 . . . . . . . . . . . . . 14 ((𝐾𝑁𝐿𝑁) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))))
42413impia 1117 . . . . . . . . . . . . 13 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
4342expdimp 452 . . . . . . . . . . . 12 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
4443com23 86 . . . . . . . . . . 11 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
4544imp31 417 . . . . . . . . . 10 (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
46 opeq1 4827 . . . . . . . . . . . 12 (𝑥 = 0 → ⟨𝑥, 𝑦⟩ = ⟨0, 𝑦⟩)
4746eqeq2d 2740 . . . . . . . . . . 11 (𝑥 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨0, 𝑦⟩))
4847imbi1d 341 . . . . . . . . . 10 (𝑥 = 0 → ((𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)) ↔ (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
4945, 48imbitrrid 246 . . . . . . . . 9 (𝑥 = 0 → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
50 opeq1 4827 . . . . . . . . . . . . 13 (𝑥 = 1 → ⟨𝑥, 𝑦⟩ = ⟨1, 𝑦⟩)
5150eqeq2d 2740 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨1, 𝑦⟩))
5251adantr 480 . . . . . . . . . . 11 ((𝑥 = 1 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨1, 𝑦⟩))
531eleq2i 2820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
5453biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
55 1ex 11130 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ V
5655, 19op1std 7941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 = ⟨1, 𝑦⟩ → (1st𝑋) = 1)
5754, 56anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → (𝑋 ∈ (Vtx‘𝐺) ∧ (1st𝑋) = 1))
58 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (Vtx‘𝐺) = (Vtx‘𝐺)
599, 10, 58, 3gpgnbgrvtx1 48079 . . . . . . . . . . . . . . . . . . . . . . 23 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (1st𝑋) = 1)) → 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})
6017, 57, 59sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})
61 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐾𝑁𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}))
62 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐿𝑁𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}))
6361, 62anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})))
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})))
65 eltpi 4642 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩))
66 eltpi 4642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩))
6710, 1, 30, 3pgnbgreunbgrlem4 48123 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
6965, 68mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7069com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7170adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7264, 71sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7360, 72mpdan 687 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7473com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑁𝐿𝑁) → ((𝑋𝑉𝑋 = ⟨1, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
7574expd 415 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝑁𝐿𝑁) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
7675com23 86 . . . . . . . . . . . . . . . . . 18 ((𝐾𝑁𝐿𝑁) → (𝑋 = ⟨1, 𝑦⟩ → (𝑋𝑉 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
7776com24 95 . . . . . . . . . . . . . . . . 17 ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
7877expd 415 . . . . . . . . . . . . . . . 16 ((𝐾𝑁𝐿𝑁) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))))
79783impia 1117 . . . . . . . . . . . . . . 15 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
8079expdimp 452 . . . . . . . . . . . . . 14 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
8180com23 86 . . . . . . . . . . . . 13 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
8281imp31 417 . . . . . . . . . . . 12 (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8382adantl 481 . . . . . . . . . . 11 ((𝑥 = 1 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8452, 83sylbid 240 . . . . . . . . . 10 ((𝑥 = 1 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
8584ex 412 . . . . . . . . 9 (𝑥 = 1 → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8649, 85jaoi 857 . . . . . . . 8 ((𝑥 = 0 ∨ 𝑥 = 1) → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8716, 86sylbi 217 . . . . . . 7 (𝑥 ∈ {0, 1} → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
8887expd 415 . . . . . 6 (𝑥 ∈ {0, 1} → ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (𝑦 ∈ (0..^5) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
8988com12 32 . . . . 5 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (𝑥 ∈ {0, 1} → (𝑦 ∈ (0..^5) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))))
9089impd 410 . . . 4 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))))
9190rexlimdvv 3185 . . 3 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
9214, 91mpd 15 . 2 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
935, 92mpidan 689 1 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {cpr 4581  {ctp 4583  cop 4585  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cmin 11366   / cdiv 11796  2c2 12202  3c3 12203  5c5 12205  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  Vtxcvtx 28960  Edgcedg 29011   NeighbVtx cnbgr 29296   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-ico 13273  df-fz 13430  df-fzo 13577  df-fl 13715  df-ceil 13716  df-mod 13793  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-dvds 16183  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-iedg 28963  df-edg 29012  df-upgr 29046  df-umgr 29047  df-usgr 29115  df-nbgr 29297  df-gpg 48045
This theorem is referenced by:  pgnbgreunbgr  48129
  Copyright terms: Public domain W3C validator