| Step | Hyp | Ref
| Expression |
| 1 | | preq2 4700 |
. . . . . 6
⊢ (𝑥 = 𝑋 → {𝐾, 𝑥} = {𝐾, 𝑋}) |
| 2 | | preq1 4699 |
. . . . . 6
⊢ (𝑥 = 𝑋 → {𝑥, 𝐿} = {𝑋, 𝐿}) |
| 3 | 1, 2 | preq12d 4707 |
. . . . 5
⊢ (𝑥 = 𝑋 → {{𝐾, 𝑥}, {𝑥, 𝐿}} = {{𝐾, 𝑋}, {𝑋, 𝐿}}) |
| 4 | 3 | sseq1d 3980 |
. . . 4
⊢ (𝑥 = 𝑋 → ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸)) |
| 5 | | eqeq1 2734 |
. . . . . 6
⊢ (𝑥 = 𝑋 → (𝑥 = 𝑦 ↔ 𝑋 = 𝑦)) |
| 6 | 5 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑋 → (({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑥 = 𝑦) ↔ ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦))) |
| 7 | 6 | ralbidv 3157 |
. . . 4
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦))) |
| 8 | 4, 7 | anbi12d 632 |
. . 3
⊢ (𝑥 = 𝑋 → (({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑥 = 𝑦)) ↔ ({{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦)))) |
| 9 | | pgnbgreunbgr.n |
. . . . . . . . 9
⊢ 𝑁 = (𝐺 NeighbVtx 𝑋) |
| 10 | 9 | eleq2i 2821 |
. . . . . . . 8
⊢ (𝐾 ∈ 𝑁 ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑋)) |
| 11 | 10 | biimpi 216 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → 𝐾 ∈ (𝐺 NeighbVtx 𝑋)) |
| 12 | 11 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → 𝐾 ∈ (𝐺 NeighbVtx 𝑋)) |
| 13 | | pgnbgreunbgr.g |
. . . . . . . 8
⊢ 𝐺 = (5 gPetersenGr
2) |
| 14 | | pgjsgr 48073 |
. . . . . . . 8
⊢ (5
gPetersenGr 2) ∈ USGraph |
| 15 | 13, 14 | eqeltri 2825 |
. . . . . . 7
⊢ 𝐺 ∈ USGraph |
| 16 | | pgnbgreunbgr.e |
. . . . . . . 8
⊢ 𝐸 = (Edg‘𝐺) |
| 17 | 16 | nbusgreledg 29286 |
. . . . . . 7
⊢ (𝐺 ∈ USGraph → (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐾, 𝑋} ∈ 𝐸)) |
| 18 | 15, 17 | ax-mp 5 |
. . . . . 6
⊢ (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐾, 𝑋} ∈ 𝐸) |
| 19 | 12, 18 | sylib 218 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → {𝐾, 𝑋} ∈ 𝐸) |
| 20 | | usgrumgr 29114 |
. . . . . 6
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
UMGraph) |
| 21 | 15, 20 | ax-mp 5 |
. . . . 5
⊢ 𝐺 ∈ UMGraph |
| 22 | 19, 21 | jctil 519 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → (𝐺 ∈ UMGraph ∧ {𝐾, 𝑋} ∈ 𝐸)) |
| 23 | | pgnbgreunbgr.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 24 | 23, 16 | umgrpredgv 29073 |
. . . 4
⊢ ((𝐺 ∈ UMGraph ∧ {𝐾, 𝑋} ∈ 𝐸) → (𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) |
| 25 | | simpr 484 |
. . . 4
⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
| 26 | 22, 24, 25 | 3syl 18 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → 𝑋 ∈ 𝑉) |
| 27 | 9 | eleq2i 2821 |
. . . . . . . 8
⊢ (𝐿 ∈ 𝑁 ↔ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)) |
| 28 | 10, 27 | anbi12i 628 |
. . . . . . 7
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) ↔ (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋))) |
| 29 | 16 | nbusgreledg 29286 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USGraph → (𝐿 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐿, 𝑋} ∈ 𝐸)) |
| 30 | | prcom 4698 |
. . . . . . . . . . 11
⊢ {𝐿, 𝑋} = {𝑋, 𝐿} |
| 31 | 30 | eleq1i 2820 |
. . . . . . . . . 10
⊢ ({𝐿, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝐿} ∈ 𝐸) |
| 32 | 29, 31 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝐺 ∈ USGraph → (𝐿 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑋, 𝐿} ∈ 𝐸)) |
| 33 | 17, 32 | anbi12d 632 |
. . . . . . . 8
⊢ (𝐺 ∈ USGraph → ((𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸))) |
| 34 | 15, 33 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸)) |
| 35 | 28, 34 | sylbb 219 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸)) |
| 36 | 35 | 3adant3 1132 |
. . . . 5
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸)) |
| 37 | | prssi 4787 |
. . . . 5
⊢ (({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸) → {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸) |
| 38 | 36, 37 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸) |
| 39 | | prex 5394 |
. . . . . . 7
⊢ {𝐾, 𝑦} ∈ V |
| 40 | | prex 5394 |
. . . . . . 7
⊢ {𝑦, 𝐿} ∈ V |
| 41 | 39, 40 | prss 4786 |
. . . . . 6
⊢ (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ {{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸) |
| 42 | | 5eluz3 12848 |
. . . . . . . . . 10
⊢ 5 ∈
(ℤ≥‘3) |
| 43 | | pglem 48072 |
. . . . . . . . . 10
⊢ 2 ∈
(1..^(⌈‘(5 / 2))) |
| 44 | | eqid 2730 |
. . . . . . . . . . 11
⊢ (0..^5) =
(0..^5) |
| 45 | | eqid 2730 |
. . . . . . . . . . 11
⊢
(1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 /
2))) |
| 46 | 44, 45, 13, 23 | gpgvtxel 48028 |
. . . . . . . . . 10
⊢ ((5
∈ (ℤ≥‘3) ∧ 2 ∈ (1..^(⌈‘(5 /
2)))) → (𝑦 ∈
𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = 〈𝑎, 𝑏〉)) |
| 47 | 42, 43, 46 | mp2an 692 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = 〈𝑎, 𝑏〉) |
| 48 | 47 | biimpi 216 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑉 → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = 〈𝑎, 𝑏〉) |
| 49 | 48 | adantl 481 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = 〈𝑎, 𝑏〉) |
| 50 | | opeq1 4839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 0 → 〈𝑎, 𝑏〉 = 〈0, 𝑏〉) |
| 51 | 50 | eqeq2d 2741 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 0 → (𝑦 = 〈𝑎, 𝑏〉 ↔ 𝑦 = 〈0, 𝑏〉)) |
| 52 | 51 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 0 ∧ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = 〈𝑎, 𝑏〉 ↔ 𝑦 = 〈0, 𝑏〉)) |
| 53 | 13, 23, 16, 9 | pgnbgreunbgrlem3 48098 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉)) |
| 54 | 53 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉)) |
| 55 | | preq2 4700 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, 𝑏〉 → {𝐾, 𝑦} = {𝐾, 〈0, 𝑏〉}) |
| 56 | 55 | eleq1d 2814 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈0, 𝑏〉 → ({𝐾, 𝑦} ∈ 𝐸 ↔ {𝐾, 〈0, 𝑏〉} ∈ 𝐸)) |
| 57 | | preq1 4699 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 〈0, 𝑏〉 → {𝑦, 𝐿} = {〈0, 𝑏〉, 𝐿}) |
| 58 | 57 | eleq1d 2814 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 〈0, 𝑏〉 → ({𝑦, 𝐿} ∈ 𝐸 ↔ {〈0, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 59 | 56, 58 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈0, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ ({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸))) |
| 60 | | eqeq2 2742 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈0, 𝑏〉 → (𝑋 = 𝑦 ↔ 𝑋 = 〈0, 𝑏〉)) |
| 61 | 59, 60 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈0, 𝑏〉 → ((({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦) ↔ (({𝐾, 〈0, 𝑏〉} ∈ 𝐸 ∧ {〈0, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈0, 𝑏〉))) |
| 62 | 54, 61 | syl5ibrcom 247 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈0, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))) |
| 63 | 62 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 0 ∧ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = 〈0, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))) |
| 64 | 52, 63 | sylbid 240 |
. . . . . . . . . . . . 13
⊢ ((𝑎 = 0 ∧ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))) |
| 65 | 64 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑎 = 0 → ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))) |
| 66 | 13, 23, 16, 9 | pgnbgreunbgrlem6 48104 |
. . . . . . . . . . . . . . 15
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) |
| 67 | 66 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉)) |
| 68 | | preq2 4700 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈1, 𝑏〉 → {𝐾, 𝑦} = {𝐾, 〈1, 𝑏〉}) |
| 69 | 68 | eleq1d 2814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈1, 𝑏〉 → ({𝐾, 𝑦} ∈ 𝐸 ↔ {𝐾, 〈1, 𝑏〉} ∈ 𝐸)) |
| 70 | | preq1 4699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 〈1, 𝑏〉 → {𝑦, 𝐿} = {〈1, 𝑏〉, 𝐿}) |
| 71 | 70 | eleq1d 2814 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 〈1, 𝑏〉 → ({𝑦, 𝐿} ∈ 𝐸 ↔ {〈1, 𝑏〉, 𝐿} ∈ 𝐸)) |
| 72 | 69, 71 | anbi12d 632 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 〈1, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ ({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸))) |
| 73 | | eqeq2 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 〈1, 𝑏〉 → (𝑋 = 𝑦 ↔ 𝑋 = 〈1, 𝑏〉)) |
| 74 | 72, 73 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 〈1, 𝑏〉 → ((({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦) ↔ (({𝐾, 〈1, 𝑏〉} ∈ 𝐸 ∧ {〈1, 𝑏〉, 𝐿} ∈ 𝐸) → 𝑋 = 〈1, 𝑏〉))) |
| 75 | 67, 74 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈1, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))) |
| 76 | | opeq1 4839 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 1 → 〈𝑎, 𝑏〉 = 〈1, 𝑏〉) |
| 77 | 76 | eqeq2d 2741 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 1 → (𝑦 = 〈𝑎, 𝑏〉 ↔ 𝑦 = 〈1, 𝑏〉)) |
| 78 | 77 | imbi1d 341 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 1 → ((𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)) ↔ (𝑦 = 〈1, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))) |
| 79 | 75, 78 | imbitrrid 246 |
. . . . . . . . . . . 12
⊢ (𝑎 = 1 → ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))) |
| 80 | 65, 79 | jaoi 857 |
. . . . . . . . . . 11
⊢ ((𝑎 = 0 ∨ 𝑎 = 1) → ((((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))) |
| 81 | 80 | expd 415 |
. . . . . . . . . 10
⊢ ((𝑎 = 0 ∨ 𝑎 = 1) → (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → (𝑏 ∈ (0..^5) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))) |
| 82 | | elpri 4615 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1)) |
| 83 | 81, 82 | syl11 33 |
. . . . . . . . 9
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → (𝑎 ∈ {0, 1} → (𝑏 ∈ (0..^5) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))) |
| 84 | 83 | impd 410 |
. . . . . . . 8
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^5)) → (𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))) |
| 85 | 84 | rexlimdvv 3194 |
. . . . . . 7
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = 〈𝑎, 𝑏〉 → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))) |
| 86 | 49, 85 | mpd 15 |
. . . . . 6
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)) |
| 87 | 41, 86 | biimtrrid 243 |
. . . . 5
⊢ (((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) ∧ 𝑦 ∈ 𝑉) → ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦)) |
| 88 | 87 | ralrimiva 3126 |
. . . 4
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦)) |
| 89 | 38, 88 | jca 511 |
. . 3
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ({{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑋 = 𝑦))) |
| 90 | 8, 26, 89 | rspcedvdw 3594 |
. 2
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ∃𝑥 ∈ 𝑉 ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑥 = 𝑦))) |
| 91 | | preq2 4700 |
. . . . 5
⊢ (𝑥 = 𝑦 → {𝐾, 𝑥} = {𝐾, 𝑦}) |
| 92 | | preq1 4699 |
. . . . 5
⊢ (𝑥 = 𝑦 → {𝑥, 𝐿} = {𝑦, 𝐿}) |
| 93 | 91, 92 | preq12d 4707 |
. . . 4
⊢ (𝑥 = 𝑦 → {{𝐾, 𝑥}, {𝑥, 𝐿}} = {{𝐾, 𝑦}, {𝑦, 𝐿}}) |
| 94 | 93 | sseq1d 3980 |
. . 3
⊢ (𝑥 = 𝑦 → ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ {{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸)) |
| 95 | 94 | reu8 3706 |
. 2
⊢
(∃!𝑥 ∈
𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ ∃𝑥 ∈ 𝑉 ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦 ∈ 𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸 → 𝑥 = 𝑦))) |
| 96 | 90, 95 | sylibr 234 |
1
⊢ ((𝐾 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝐾 ≠ 𝐿) → ∃!𝑥 ∈ 𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸) |