Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgr Structured version   Visualization version   GIF version

Theorem pgnbgreunbgr 48287
Description: In a Petersen graph, two different neighbors of a vertex have exactly one common neighbor, which is the vertex itself. (Contributed by AV, 9-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgr ((𝐾𝑁𝐿𝑁𝐾𝐿) → ∃!𝑥𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸)
Distinct variable groups:   𝑥,𝐸   𝑥,𝐾   𝑥,𝐿   𝑥,𝑁   𝑥,𝑉   𝑥,𝑋
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem pgnbgreunbgr
Dummy variables 𝑦 𝑏 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 preq2 4688 . . . . . 6 (𝑥 = 𝑋 → {𝐾, 𝑥} = {𝐾, 𝑋})
2 preq1 4687 . . . . . 6 (𝑥 = 𝑋 → {𝑥, 𝐿} = {𝑋, 𝐿})
31, 2preq12d 4695 . . . . 5 (𝑥 = 𝑋 → {{𝐾, 𝑥}, {𝑥, 𝐿}} = {{𝐾, 𝑋}, {𝑋, 𝐿}})
43sseq1d 3962 . . . 4 (𝑥 = 𝑋 → ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸))
5 eqeq1 2737 . . . . . 6 (𝑥 = 𝑋 → (𝑥 = 𝑦𝑋 = 𝑦))
65imbi2d 340 . . . . 5 (𝑥 = 𝑋 → (({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑥 = 𝑦) ↔ ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦)))
76ralbidv 3156 . . . 4 (𝑥 = 𝑋 → (∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑥 = 𝑦) ↔ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦)))
84, 7anbi12d 632 . . 3 (𝑥 = 𝑋 → (({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑥 = 𝑦)) ↔ ({{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦))))
9 pgnbgreunbgr.n . . . . . . . . 9 𝑁 = (𝐺 NeighbVtx 𝑋)
109eleq2i 2825 . . . . . . . 8 (𝐾𝑁𝐾 ∈ (𝐺 NeighbVtx 𝑋))
1110biimpi 216 . . . . . . 7 (𝐾𝑁𝐾 ∈ (𝐺 NeighbVtx 𝑋))
12113ad2ant1 1133 . . . . . 6 ((𝐾𝑁𝐿𝑁𝐾𝐿) → 𝐾 ∈ (𝐺 NeighbVtx 𝑋))
13 pgnbgreunbgr.g . . . . . . . 8 𝐺 = (5 gPetersenGr 2)
14 pgjsgr 48254 . . . . . . . 8 (5 gPetersenGr 2) ∈ USGraph
1513, 14eqeltri 2829 . . . . . . 7 𝐺 ∈ USGraph
16 pgnbgreunbgr.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
1716nbusgreledg 29352 . . . . . . 7 (𝐺 ∈ USGraph → (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐾, 𝑋} ∈ 𝐸))
1815, 17ax-mp 5 . . . . . 6 (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐾, 𝑋} ∈ 𝐸)
1912, 18sylib 218 . . . . 5 ((𝐾𝑁𝐿𝑁𝐾𝐿) → {𝐾, 𝑋} ∈ 𝐸)
20 usgrumgr 29180 . . . . . 6 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
2115, 20ax-mp 5 . . . . 5 𝐺 ∈ UMGraph
2219, 21jctil 519 . . . 4 ((𝐾𝑁𝐿𝑁𝐾𝐿) → (𝐺 ∈ UMGraph ∧ {𝐾, 𝑋} ∈ 𝐸))
23 pgnbgreunbgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
2423, 16umgrpredgv 29139 . . . 4 ((𝐺 ∈ UMGraph ∧ {𝐾, 𝑋} ∈ 𝐸) → (𝐾𝑉𝑋𝑉))
25 simpr 484 . . . 4 ((𝐾𝑉𝑋𝑉) → 𝑋𝑉)
2622, 24, 253syl 18 . . 3 ((𝐾𝑁𝐿𝑁𝐾𝐿) → 𝑋𝑉)
279eleq2i 2825 . . . . . . . 8 (𝐿𝑁𝐿 ∈ (𝐺 NeighbVtx 𝑋))
2810, 27anbi12i 628 . . . . . . 7 ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)))
2916nbusgreledg 29352 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝐿 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝐿, 𝑋} ∈ 𝐸))
30 prcom 4686 . . . . . . . . . . 11 {𝐿, 𝑋} = {𝑋, 𝐿}
3130eleq1i 2824 . . . . . . . . . 10 ({𝐿, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝐿} ∈ 𝐸)
3229, 31bitrdi 287 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝐿 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑋, 𝐿} ∈ 𝐸))
3317, 32anbi12d 632 . . . . . . . 8 (𝐺 ∈ USGraph → ((𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸)))
3415, 33ax-mp 5 . . . . . . 7 ((𝐾 ∈ (𝐺 NeighbVtx 𝑋) ∧ 𝐿 ∈ (𝐺 NeighbVtx 𝑋)) ↔ ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸))
3528, 34sylbb 219 . . . . . 6 ((𝐾𝑁𝐿𝑁) → ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸))
36353adant3 1132 . . . . 5 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸))
37 prssi 4774 . . . . 5 (({𝐾, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝐿} ∈ 𝐸) → {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸)
3836, 37syl 17 . . . 4 ((𝐾𝑁𝐿𝑁𝐾𝐿) → {{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸)
39 prex 5379 . . . . . . 7 {𝐾, 𝑦} ∈ V
40 prex 5379 . . . . . . 7 {𝑦, 𝐿} ∈ V
4139, 40prss 4773 . . . . . 6 (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ {{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸)
42 5eluz3 12787 . . . . . . . . . 10 5 ∈ (ℤ‘3)
43 pglem 48253 . . . . . . . . . 10 2 ∈ (1..^(⌈‘(5 / 2)))
44 eqid 2733 . . . . . . . . . . 11 (0..^5) = (0..^5)
45 eqid 2733 . . . . . . . . . . 11 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
4644, 45, 13, 23gpgvtxel 48209 . . . . . . . . . 10 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (𝑦𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = ⟨𝑎, 𝑏⟩))
4742, 43, 46mp2an 692 . . . . . . . . 9 (𝑦𝑉 ↔ ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = ⟨𝑎, 𝑏⟩)
4847biimpi 216 . . . . . . . 8 (𝑦𝑉 → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = ⟨𝑎, 𝑏⟩)
4948adantl 481 . . . . . . 7 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → ∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = ⟨𝑎, 𝑏⟩)
50 opeq1 4826 . . . . . . . . . . . . . . . 16 (𝑎 = 0 → ⟨𝑎, 𝑏⟩ = ⟨0, 𝑏⟩)
5150eqeq2d 2744 . . . . . . . . . . . . . . 15 (𝑎 = 0 → (𝑦 = ⟨𝑎, 𝑏⟩ ↔ 𝑦 = ⟨0, 𝑏⟩))
5251adantr 480 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = ⟨𝑎, 𝑏⟩ ↔ 𝑦 = ⟨0, 𝑏⟩))
5313, 23, 16, 9pgnbgreunbgrlem3 48280 . . . . . . . . . . . . . . . . 17 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
5453adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
55 preq2 4688 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, 𝑏⟩ → {𝐾, 𝑦} = {𝐾, ⟨0, 𝑏⟩})
5655eleq1d 2818 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨0, 𝑏⟩ → ({𝐾, 𝑦} ∈ 𝐸 ↔ {𝐾, ⟨0, 𝑏⟩} ∈ 𝐸))
57 preq1 4687 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ⟨0, 𝑏⟩ → {𝑦, 𝐿} = {⟨0, 𝑏⟩, 𝐿})
5857eleq1d 2818 . . . . . . . . . . . . . . . . . 18 (𝑦 = ⟨0, 𝑏⟩ → ({𝑦, 𝐿} ∈ 𝐸 ↔ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸))
5956, 58anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨0, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ ({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸)))
60 eqeq2 2745 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨0, 𝑏⟩ → (𝑋 = 𝑦𝑋 = ⟨0, 𝑏⟩))
6159, 60imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨0, 𝑏⟩ → ((({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦) ↔ (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
6254, 61syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨0, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))
6362adantl 481 . . . . . . . . . . . . . 14 ((𝑎 = 0 ∧ (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = ⟨0, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))
6452, 63sylbid 240 . . . . . . . . . . . . 13 ((𝑎 = 0 ∧ (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5))) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))
6564ex 412 . . . . . . . . . . . 12 (𝑎 = 0 → ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))
6613, 23, 16, 9pgnbgreunbgrlem6 48286 . . . . . . . . . . . . . . 15 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
6766adantlr 715 . . . . . . . . . . . . . 14 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩))
68 preq2 4688 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨1, 𝑏⟩ → {𝐾, 𝑦} = {𝐾, ⟨1, 𝑏⟩})
6968eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨1, 𝑏⟩ → ({𝐾, 𝑦} ∈ 𝐸 ↔ {𝐾, ⟨1, 𝑏⟩} ∈ 𝐸))
70 preq1 4687 . . . . . . . . . . . . . . . . 17 (𝑦 = ⟨1, 𝑏⟩ → {𝑦, 𝐿} = {⟨1, 𝑏⟩, 𝐿})
7170eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑦 = ⟨1, 𝑏⟩ → ({𝑦, 𝐿} ∈ 𝐸 ↔ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸))
7269, 71anbi12d 632 . . . . . . . . . . . . . . 15 (𝑦 = ⟨1, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) ↔ ({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸)))
73 eqeq2 2745 . . . . . . . . . . . . . . 15 (𝑦 = ⟨1, 𝑏⟩ → (𝑋 = 𝑦𝑋 = ⟨1, 𝑏⟩))
7472, 73imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = ⟨1, 𝑏⟩ → ((({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦) ↔ (({𝐾, ⟨1, 𝑏⟩} ∈ 𝐸 ∧ {⟨1, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨1, 𝑏⟩)))
7567, 74syl5ibrcom 247 . . . . . . . . . . . . 13 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨1, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))
76 opeq1 4826 . . . . . . . . . . . . . . 15 (𝑎 = 1 → ⟨𝑎, 𝑏⟩ = ⟨1, 𝑏⟩)
7776eqeq2d 2744 . . . . . . . . . . . . . 14 (𝑎 = 1 → (𝑦 = ⟨𝑎, 𝑏⟩ ↔ 𝑦 = ⟨1, 𝑏⟩))
7877imbi1d 341 . . . . . . . . . . . . 13 (𝑎 = 1 → ((𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)) ↔ (𝑦 = ⟨1, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))
7975, 78imbitrrid 246 . . . . . . . . . . . 12 (𝑎 = 1 → ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))
8065, 79jaoi 857 . . . . . . . . . . 11 ((𝑎 = 0 ∨ 𝑎 = 1) → ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))
8180expd 415 . . . . . . . . . 10 ((𝑎 = 0 ∨ 𝑎 = 1) → (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → (𝑏 ∈ (0..^5) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))))
82 elpri 4601 . . . . . . . . . 10 (𝑎 ∈ {0, 1} → (𝑎 = 0 ∨ 𝑎 = 1))
8381, 82syl11 33 . . . . . . . . 9 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → (𝑎 ∈ {0, 1} → (𝑏 ∈ (0..^5) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))))
8483impd 410 . . . . . . . 8 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → ((𝑎 ∈ {0, 1} ∧ 𝑏 ∈ (0..^5)) → (𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))))
8584rexlimdvv 3189 . . . . . . 7 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → (∃𝑎 ∈ {0, 1}∃𝑏 ∈ (0..^5)𝑦 = ⟨𝑎, 𝑏⟩ → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦)))
8649, 85mpd 15 . . . . . 6 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → (({𝐾, 𝑦} ∈ 𝐸 ∧ {𝑦, 𝐿} ∈ 𝐸) → 𝑋 = 𝑦))
8741, 86biimtrrid 243 . . . . 5 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑦𝑉) → ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦))
8887ralrimiva 3125 . . . 4 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦))
8938, 88jca 511 . . 3 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ({{𝐾, 𝑋}, {𝑋, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑋 = 𝑦)))
908, 26, 89rspcedvdw 3576 . 2 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ∃𝑥𝑉 ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑥 = 𝑦)))
91 preq2 4688 . . . . 5 (𝑥 = 𝑦 → {𝐾, 𝑥} = {𝐾, 𝑦})
92 preq1 4687 . . . . 5 (𝑥 = 𝑦 → {𝑥, 𝐿} = {𝑦, 𝐿})
9391, 92preq12d 4695 . . . 4 (𝑥 = 𝑦 → {{𝐾, 𝑥}, {𝑥, 𝐿}} = {{𝐾, 𝑦}, {𝑦, 𝐿}})
9493sseq1d 3962 . . 3 (𝑥 = 𝑦 → ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ {{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸))
9594reu8 3688 . 2 (∃!𝑥𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ↔ ∃𝑥𝑉 ({{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸 ∧ ∀𝑦𝑉 ({{𝐾, 𝑦}, {𝑦, 𝐿}} ⊆ 𝐸𝑥 = 𝑦)))
9690, 95sylibr 234 1 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ∃!𝑥𝑉 {{𝐾, 𝑥}, {𝑥, 𝐿}} ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  wss 3898  {cpr 4579  cop 4583  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   / cdiv 11785  2c2 12191  3c3 12192  5c5 12194  cuz 12742  ..^cfzo 13561  cceil 13702  Vtxcvtx 28995  Edgcedg 29046  UMGraphcumgr 29080  USGraphcusgr 29148   NeighbVtx cnbgr 29331   gPetersenGr cgpg 48202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-xnn0 12466  df-z 12480  df-dec 12599  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-dvds 16171  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-edgf 28988  df-vtx 28997  df-iedg 28998  df-edg 29047  df-upgr 29081  df-umgr 29082  df-usgr 29150  df-nbgr 29332  df-gpg 48203
This theorem is referenced by:  pgn4cyclex  48288
  Copyright terms: Public domain W3C validator