Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pgnbgreunbgrlem3 Structured version   Visualization version   GIF version

Theorem pgnbgreunbgrlem3 48149
Description: Lemma 3 for pgnbgreunbgr 48156. (Contributed by AV, 18-Nov-2025.)
Hypotheses
Ref Expression
pgnbgreunbgr.g 𝐺 = (5 gPetersenGr 2)
pgnbgreunbgr.v 𝑉 = (Vtx‘𝐺)
pgnbgreunbgr.e 𝐸 = (Edg‘𝐺)
pgnbgreunbgr.n 𝑁 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
pgnbgreunbgrlem3 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))

Proof of Theorem pgnbgreunbgrlem3
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgnbgreunbgr.v . . . . 5 𝑉 = (Vtx‘𝐺)
21nbgrcl 29308 . . . 4 (𝐾 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋𝑉)
3 pgnbgreunbgr.n . . . 4 𝑁 = (𝐺 NeighbVtx 𝑋)
42, 3eleq2s 2849 . . 3 (𝐾𝑁𝑋𝑉)
543ad2ant1 1133 . 2 ((𝐾𝑁𝐿𝑁𝐾𝐿) → 𝑋𝑉)
6 5eluz3 12776 . . . . . 6 5 ∈ (ℤ‘3)
7 pglem 48122 . . . . . 6 2 ∈ (1..^(⌈‘(5 / 2)))
8 eqid 2731 . . . . . . 7 (0..^5) = (0..^5)
9 eqid 2731 . . . . . . 7 (1..^(⌈‘(5 / 2))) = (1..^(⌈‘(5 / 2)))
10 pgnbgreunbgr.g . . . . . . 7 𝐺 = (5 gPetersenGr 2)
118, 9, 10, 1gpgvtxel 48078 . . . . . 6 ((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩))
126, 7, 11mp2an 692 . . . . 5 (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
1312biimpi 216 . . . 4 (𝑋𝑉 → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
1413adantl 481 . . 3 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩)
15 vex 3440 . . . . . . . . 9 𝑥 ∈ V
1615elpr 4596 . . . . . . . 8 (𝑥 ∈ {0, 1} ↔ (𝑥 = 0 ∨ 𝑥 = 1))
17 opeq1 4820 . . . . . . . . . . . . 13 (𝑥 = 0 → ⟨𝑥, 𝑦⟩ = ⟨0, 𝑦⟩)
1817eqeq2d 2742 . . . . . . . . . . . 12 (𝑥 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨0, 𝑦⟩))
1918adantr 480 . . . . . . . . . . 11 ((𝑥 = 0 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨0, 𝑦⟩))
206, 7pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . 23 (5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2))))
211eleq2i 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
2221biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋𝑉𝑋 ∈ (Vtx‘𝐺))
23 c0ex 11101 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ V
24 vex 3440 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑦 ∈ V
2523, 24op1std 7926 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑋 = ⟨0, 𝑦⟩ → (1st𝑋) = 0)
2622, 25anim12i 613 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → (𝑋 ∈ (Vtx‘𝐺) ∧ (1st𝑋) = 0))
27 eqid 2731 . . . . . . . . . . . . . . . . . . . . . . . 24 (Vtx‘𝐺) = (Vtx‘𝐺)
289, 10, 27, 3gpgnbgrvtx0 48105 . . . . . . . . . . . . . . . . . . . . . . 23 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ (1st𝑋) = 0)) → 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})
2920, 26, 28sylancr 587 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})
30 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐾𝑁𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}))
31 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐿𝑁𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}))
3230, 31anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})))
3332adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩})))
34 eltpi 4636 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩))
35 eltpi 4636 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → (𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩))
36 pgnbgreunbgr.e . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐸 = (Edg‘𝐺)
3710, 1, 36, 3pgnbgreunbgrlem1 48144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐿 = ⟨1, (2nd𝑋)⟩ ∨ 𝐿 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
3835, 37syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} → ((𝐾 = ⟨0, (((2nd𝑋) + 1) mod 5)⟩ ∨ 𝐾 = ⟨1, (2nd𝑋)⟩ ∨ 𝐾 = ⟨0, (((2nd𝑋) − 1) mod 5)⟩) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
3934, 38mpan9 506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4039com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4140adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩} ∧ 𝐿 ∈ {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4233, 41sylbid 240 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) ∧ 𝑁 = {⟨0, (((2nd𝑋) + 1) mod 5)⟩, ⟨1, (2nd𝑋)⟩, ⟨0, (((2nd𝑋) − 1) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4329, 42mpdan 687 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4443com12 32 . . . . . . . . . . . . . . . . . . . 20 ((𝐾𝑁𝐿𝑁) → ((𝑋𝑉𝑋 = ⟨0, 𝑦⟩) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
4544expd 415 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝑁𝐿𝑁) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
4645com23 86 . . . . . . . . . . . . . . . . . 18 ((𝐾𝑁𝐿𝑁) → (𝑋 = ⟨0, 𝑦⟩ → (𝑋𝑉 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
4746com24 95 . . . . . . . . . . . . . . . . 17 ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
4847expd 415 . . . . . . . . . . . . . . . 16 ((𝐾𝑁𝐿𝑁) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))))
49483impia 1117 . . . . . . . . . . . . . . 15 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
5049expdimp 452 . . . . . . . . . . . . . 14 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋𝑉 → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
5150com23 86 . . . . . . . . . . . . 13 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
5251imp31 417 . . . . . . . . . . . 12 (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
5352adantl 481 . . . . . . . . . . 11 ((𝑥 = 0 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨0, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
5419, 53sylbid 240 . . . . . . . . . 10 ((𝑥 = 0 ∧ ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5))) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
5554ex 412 . . . . . . . . 9 (𝑥 = 0 → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
56 1ex 11103 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ V
5756, 24op1std 7926 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 = ⟨1, 𝑦⟩ → (1st𝑋) = 1)
5857anim1ci 616 . . . . . . . . . . . . . . . . . . . 20 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → (𝑋𝑉 ∧ (1st𝑋) = 1))
599, 10, 1, 3gpgnbgrvtx1 48106 . . . . . . . . . . . . . . . . . . . 20 (((5 ∈ (ℤ‘3) ∧ 2 ∈ (1..^(⌈‘(5 / 2)))) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})
6020, 58, 59sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})
61 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐾𝑁𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}))
62 eleq2 2820 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐿𝑁𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}))
6361, 62anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})))
6463adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) ↔ (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩})))
65 eltpi 4636 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩))
66 eltpi 4636 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → (𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩))
6710, 1, 36, 3pgnbgreunbgrlem2 48148 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐿 = ⟨0, (2nd𝑋)⟩ ∨ 𝐿 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
6866, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} → ((𝐾 = ⟨1, (((2nd𝑋) + 2) mod 5)⟩ ∨ 𝐾 = ⟨0, (2nd𝑋)⟩ ∨ 𝐾 = ⟨1, (((2nd𝑋) − 2) mod 5)⟩) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
6965, 68mpan9 506 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7069com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7170adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩} ∧ 𝐿 ∈ {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7264, 71sylbid 240 . . . . . . . . . . . . . . . . . . 19 (((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) ∧ 𝑁 = {⟨1, (((2nd𝑋) + 2) mod 5)⟩, ⟨0, (2nd𝑋)⟩, ⟨1, (((2nd𝑋) − 2) mod 5)⟩}) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7360, 72mpdan 687 . . . . . . . . . . . . . . . . . 18 ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7473com12 32 . . . . . . . . . . . . . . . . 17 ((𝐾𝑁𝐿𝑁) → ((𝑋 = ⟨1, 𝑦⟩ ∧ 𝑋𝑉) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
7574expd 415 . . . . . . . . . . . . . . . 16 ((𝐾𝑁𝐿𝑁) → (𝑋 = ⟨1, 𝑦⟩ → (𝑋𝑉 → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
7675com24 95 . . . . . . . . . . . . . . 15 ((𝐾𝑁𝐿𝑁) → ((𝐾𝐿 ∧ (𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5))) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
7776expd 415 . . . . . . . . . . . . . 14 ((𝐾𝑁𝐿𝑁) → (𝐾𝐿 → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))))
78773impia 1117 . . . . . . . . . . . . 13 ((𝐾𝑁𝐿𝑁𝐾𝐿) → ((𝑏 ∈ (0..^5) ∧ 𝑦 ∈ (0..^5)) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
7978expdimp 452 . . . . . . . . . . . 12 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑦 ∈ (0..^5) → (𝑋𝑉 → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8079com23 86 . . . . . . . . . . 11 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (𝑋𝑉 → (𝑦 ∈ (0..^5) → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8180imp31 417 . . . . . . . . . 10 (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
82 opeq1 4820 . . . . . . . . . . . 12 (𝑥 = 1 → ⟨𝑥, 𝑦⟩ = ⟨1, 𝑦⟩)
8382eqeq2d 2742 . . . . . . . . . . 11 (𝑥 = 1 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨1, 𝑦⟩))
8483imbi1d 341 . . . . . . . . . 10 (𝑥 = 1 → ((𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)) ↔ (𝑋 = ⟨1, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
8581, 84imbitrrid 246 . . . . . . . . 9 (𝑥 = 1 → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
8655, 85jaoi 857 . . . . . . . 8 ((𝑥 = 0 ∨ 𝑥 = 1) → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
8716, 86sylbi 217 . . . . . . 7 (𝑥 ∈ {0, 1} → (((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
8887expd 415 . . . . . 6 (𝑥 ∈ {0, 1} → ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (𝑦 ∈ (0..^5) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
8988com12 32 . . . . 5 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (𝑥 ∈ {0, 1} → (𝑦 ∈ (0..^5) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))))
9089impd 410 . . . 4 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^5)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))))
9190rexlimdvv 3188 . . 3 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^5)𝑋 = ⟨𝑥, 𝑦⟩ → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩)))
9214, 91mpd 15 . 2 ((((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) ∧ 𝑋𝑉) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
935, 92mpidan 689 1 (((𝐾𝑁𝐿𝑁𝐾𝐿) ∧ 𝑏 ∈ (0..^5)) → (({𝐾, ⟨0, 𝑏⟩} ∈ 𝐸 ∧ {⟨0, 𝑏⟩, 𝐿} ∈ 𝐸) → 𝑋 = ⟨0, 𝑏⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {cpr 4573  {ctp 4575  cop 4577  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  0cc0 11001  1c1 11002   + caddc 11004  cmin 11339   / cdiv 11769  2c2 12175  3c3 12176  5c5 12178  cuz 12727  ..^cfzo 13549  cceil 13690   mod cmo 13768  Vtxcvtx 28969  Edgcedg 29020   NeighbVtx cnbgr 29305   gPetersenGr cgpg 48071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-dec 12584  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-fl 13691  df-ceil 13692  df-mod 13769  df-hash 14233  df-dvds 16159  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-edgf 28962  df-vtx 28971  df-iedg 28972  df-edg 29021  df-upgr 29055  df-umgr 29056  df-usgr 29124  df-nbgr 29306  df-gpg 48072
This theorem is referenced by:  pgnbgreunbgr  48156
  Copyright terms: Public domain W3C validator