| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgcubic | Structured version Visualization version GIF version | ||
| Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48063), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgnbgr.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgnbgr.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| gpgnbgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| Ref | Expression |
|---|---|
| gpgcubic | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 2 | gpgnbgr.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | gpgnbgr.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 4 | gpgnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 1, 2, 3, 4 | gpgvtxel 48028 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | 5 | biimp3a 1471 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉) |
| 7 | elpri 4615 | . . . . . . 7 ⊢ (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1)) | |
| 8 | opeq1 4839 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) | |
| 9 | 8 | eqeq2d 2741 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 11 | c0ex 11174 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 12 | vex 3454 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 7980 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
| 14 | gpgnbgr.u | . . . . . . . . . . . . . . 15 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 15 | 2, 3, 4, 14 | gpg3nbgrvtx0 48057 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) |
| 16 | 15 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)))) |
| 17 | 16 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)) |
| 18 | 13, 17 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 20 | 10, 19 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 22 | opeq1 4839 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) | |
| 23 | 22 | eqeq2d 2741 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 25 | 1ex 11176 | . . . . . . . . . . . . 13 ⊢ 1 ∈ V | |
| 26 | 25, 12 | op1std 7980 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
| 27 | 2, 3, 4, 14 | gpg3nbgrvtx1 48059 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) |
| 28 | 27 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)))) |
| 29 | 28 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)) |
| 30 | 26, 29 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 32 | 24, 31 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 33 | 32 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 1 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 34 | 21, 33 | jaoi 857 | . . . . . . 7 ⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 35 | 7, 34 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 36 | 35 | impcom 407 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 37 | 36 | a1d 25 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 38 | 37 | expimpd 453 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 39 | 38 | rexlimdvv 3194 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 40 | 6, 39 | mpd 15 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {cpr 4593 〈cop 4597 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 0cc0 11074 1c1 11075 / cdiv 11841 2c2 12242 3c3 12243 ℤ≥cuz 12799 ..^cfzo 13621 ⌈cceil 13759 ♯chash 14301 Vtxcvtx 28929 NeighbVtx cnbgr 29265 gPetersenGr cgpg 48021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-oadd 8440 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-inf 9400 df-dju 9860 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-xnn0 12522 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-ico 13318 df-fz 13475 df-fzo 13622 df-fl 13760 df-ceil 13761 df-mod 13838 df-hash 14302 df-dvds 16229 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-edgf 28922 df-vtx 28931 df-iedg 28932 df-edg 28981 df-upgr 29015 df-umgr 29016 df-usgr 29084 df-nbgr 29266 df-gpg 48022 |
| This theorem is referenced by: gpgvtxdg3 48063 |
| Copyright terms: Public domain | W3C validator |