| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgcubic | Structured version Visualization version GIF version | ||
| Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48046), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgnbgr.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgnbgr.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| gpgnbgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| Ref | Expression |
|---|---|
| gpgcubic | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 2 | gpgnbgr.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | gpgnbgr.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 4 | gpgnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 1, 2, 3, 4 | gpgvtxel 48011 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | 5 | biimp3a 1471 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉) |
| 7 | elpri 4609 | . . . . . . 7 ⊢ (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1)) | |
| 8 | opeq1 4833 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) | |
| 9 | 8 | eqeq2d 2740 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 11 | c0ex 11144 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 12 | vex 3448 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 7957 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
| 14 | gpgnbgr.u | . . . . . . . . . . . . . . 15 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 15 | 2, 3, 4, 14 | gpg3nbgrvtx0 48040 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) |
| 16 | 15 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)))) |
| 17 | 16 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)) |
| 18 | 13, 17 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 20 | 10, 19 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 22 | opeq1 4833 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) | |
| 23 | 22 | eqeq2d 2740 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 25 | 1ex 11146 | . . . . . . . . . . . . 13 ⊢ 1 ∈ V | |
| 26 | 25, 12 | op1std 7957 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
| 27 | 2, 3, 4, 14 | gpg3nbgrvtx1 48042 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) |
| 28 | 27 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)))) |
| 29 | 28 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)) |
| 30 | 26, 29 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 32 | 24, 31 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 33 | 32 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 1 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 34 | 21, 33 | jaoi 857 | . . . . . . 7 ⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 35 | 7, 34 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 36 | 35 | impcom 407 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 37 | 36 | a1d 25 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 38 | 37 | expimpd 453 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 39 | 38 | rexlimdvv 3191 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 40 | 6, 39 | mpd 15 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {cpr 4587 〈cop 4591 ‘cfv 6499 (class class class)co 7369 1st c1st 7945 0cc0 11044 1c1 11045 / cdiv 11811 2c2 12217 3c3 12218 ℤ≥cuz 12769 ..^cfzo 13591 ⌈cceil 13729 ♯chash 14271 Vtxcvtx 28899 NeighbVtx cnbgr 29235 gPetersenGr cgpg 48004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-ceil 13731 df-mod 13808 df-hash 14272 df-dvds 16199 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-edgf 28892 df-vtx 28901 df-iedg 28902 df-edg 28951 df-upgr 28985 df-umgr 28986 df-usgr 29054 df-nbgr 29236 df-gpg 48005 |
| This theorem is referenced by: gpgvtxdg3 48046 |
| Copyright terms: Public domain | W3C validator |