| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgcubic | Structured version Visualization version GIF version | ||
| Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48086), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgnbgr.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgnbgr.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| gpgnbgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| Ref | Expression |
|---|---|
| gpgcubic | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 2 | gpgnbgr.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | gpgnbgr.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 4 | gpgnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 1, 2, 3, 4 | gpgvtxel 48051 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | 5 | biimp3a 1471 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉) |
| 7 | elpri 4603 | . . . . . . 7 ⊢ (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1)) | |
| 8 | opeq1 4827 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) | |
| 9 | 8 | eqeq2d 2740 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 11 | c0ex 11128 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 12 | vex 3442 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 7941 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
| 14 | gpgnbgr.u | . . . . . . . . . . . . . . 15 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 15 | 2, 3, 4, 14 | gpg3nbgrvtx0 48080 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) |
| 16 | 15 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)))) |
| 17 | 16 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)) |
| 18 | 13, 17 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 20 | 10, 19 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 22 | opeq1 4827 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) | |
| 23 | 22 | eqeq2d 2740 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 25 | 1ex 11130 | . . . . . . . . . . . . 13 ⊢ 1 ∈ V | |
| 26 | 25, 12 | op1std 7941 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
| 27 | 2, 3, 4, 14 | gpg3nbgrvtx1 48082 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) |
| 28 | 27 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)))) |
| 29 | 28 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)) |
| 30 | 26, 29 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 32 | 24, 31 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 33 | 32 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 1 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 34 | 21, 33 | jaoi 857 | . . . . . . 7 ⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 35 | 7, 34 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 36 | 35 | impcom 407 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 37 | 36 | a1d 25 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 38 | 37 | expimpd 453 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 39 | 38 | rexlimdvv 3185 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 40 | 6, 39 | mpd 15 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {cpr 4581 〈cop 4585 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 0cc0 11028 1c1 11029 / cdiv 11796 2c2 12202 3c3 12203 ℤ≥cuz 12754 ..^cfzo 13576 ⌈cceil 13714 ♯chash 14256 Vtxcvtx 28960 NeighbVtx cnbgr 29296 gPetersenGr cgpg 48044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-div 11797 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-8 12216 df-9 12217 df-n0 12404 df-xnn0 12477 df-z 12491 df-dec 12611 df-uz 12755 df-rp 12913 df-ico 13273 df-fz 13430 df-fzo 13577 df-fl 13715 df-ceil 13716 df-mod 13793 df-hash 14257 df-dvds 16183 df-struct 17077 df-slot 17112 df-ndx 17124 df-base 17140 df-edgf 28953 df-vtx 28962 df-iedg 28963 df-edg 29012 df-upgr 29046 df-umgr 29047 df-usgr 29115 df-nbgr 29297 df-gpg 48045 |
| This theorem is referenced by: gpgvtxdg3 48086 |
| Copyright terms: Public domain | W3C validator |