Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgcubic Structured version   Visualization version   GIF version

Theorem gpgcubic 48008
Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48011), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.)
Hypotheses
Ref Expression
gpgnbgr.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgnbgr.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgnbgr.v 𝑉 = (Vtx‘𝐺)
gpgnbgr.u 𝑈 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
gpgcubic ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (♯‘𝑈) = 3)

Proof of Theorem gpgcubic
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (0..^𝑁) = (0..^𝑁)
2 gpgnbgr.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgnbgr.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgnbgr.v . . . 4 𝑉 = (Vtx‘𝐺)
51, 2, 3, 4gpgvtxel 47978 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩))
65biimp3a 1471 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩)
7 elpri 4647 . . . . . . 7 (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1))
8 opeq1 4871 . . . . . . . . . . . 12 (𝑥 = 0 → ⟨𝑥, 𝑦⟩ = ⟨0, 𝑦⟩)
98eqeq2d 2747 . . . . . . . . . . 11 (𝑥 = 0 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨0, 𝑦⟩))
109adantr 480 . . . . . . . . . 10 ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨0, 𝑦⟩))
11 c0ex 11251 . . . . . . . . . . . . 13 0 ∈ V
12 vex 3483 . . . . . . . . . . . . 13 𝑦 ∈ V
1311, 12op1std 8020 . . . . . . . . . . . 12 (𝑋 = ⟨0, 𝑦⟩ → (1st𝑋) = 0)
14 gpgnbgr.u . . . . . . . . . . . . . . 15 𝑈 = (𝐺 NeighbVtx 𝑋)
152, 3, 4, 14gpg3nbgrvtx0 48005 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 0)) → (♯‘𝑈) = 3)
1615exp43 436 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 0 → (♯‘𝑈) = 3))))
17163imp 1111 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 0 → (♯‘𝑈) = 3))
1813, 17syl5 34 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨0, 𝑦⟩ → (♯‘𝑈) = 3))
1918adantl 481 . . . . . . . . . 10 ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨0, 𝑦⟩ → (♯‘𝑈) = 3))
2010, 19sylbid 240 . . . . . . . . 9 ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3))
2120ex 412 . . . . . . . 8 (𝑥 = 0 → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
22 opeq1 4871 . . . . . . . . . . . 12 (𝑥 = 1 → ⟨𝑥, 𝑦⟩ = ⟨1, 𝑦⟩)
2322eqeq2d 2747 . . . . . . . . . . 11 (𝑥 = 1 → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨1, 𝑦⟩))
2423adantr 480 . . . . . . . . . 10 ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑥, 𝑦⟩ ↔ 𝑋 = ⟨1, 𝑦⟩))
25 1ex 11253 . . . . . . . . . . . . 13 1 ∈ V
2625, 12op1std 8020 . . . . . . . . . . . 12 (𝑋 = ⟨1, 𝑦⟩ → (1st𝑋) = 1)
272, 3, 4, 14gpg3nbgrvtx1 48007 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑋𝑉 ∧ (1st𝑋) = 1)) → (♯‘𝑈) = 3)
2827exp43 436 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ‘3) → (𝐾𝐽 → (𝑋𝑉 → ((1st𝑋) = 1 → (♯‘𝑈) = 3))))
29283imp 1111 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → ((1st𝑋) = 1 → (♯‘𝑈) = 3))
3026, 29syl5 34 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨1, 𝑦⟩ → (♯‘𝑈) = 3))
3130adantl 481 . . . . . . . . . 10 ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨1, 𝑦⟩ → (♯‘𝑈) = 3))
3224, 31sylbid 240 . . . . . . . . 9 ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3))
3332ex 412 . . . . . . . 8 (𝑥 = 1 → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
3421, 33jaoi 858 . . . . . . 7 ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
357, 34syl 17 . . . . . 6 (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
3635impcom 407 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3))
3736a1d 25 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
3837expimpd 453 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3)))
3938rexlimdvv 3211 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩ → (♯‘𝑈) = 3))
406, 39mpd 15 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽𝑋𝑉) → (♯‘𝑈) = 3)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wrex 3069  {cpr 4626  cop 4630  cfv 6559  (class class class)co 7429  1st c1st 8008  0cc0 11151  1c1 11152   / cdiv 11916  2c2 12317  3c3 12318  cuz 12874  ..^cfzo 13690  cceil 13827  chash 14365  Vtxcvtx 29003   NeighbVtx cnbgr 29339   gPetersenGr cgpg 47972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228  ax-pre-sup 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-oadd 8506  df-er 8741  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-sup 9478  df-inf 9479  df-dju 9937  df-card 9975  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-div 11917  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-rp 13031  df-ico 13389  df-fz 13544  df-fzo 13691  df-fl 13828  df-ceil 13829  df-mod 13906  df-hash 14366  df-dvds 16287  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-edgf 28994  df-vtx 29005  df-iedg 29006  df-edg 29055  df-upgr 29089  df-umgr 29090  df-usgr 29158  df-nbgr 29340  df-gpg 47973
This theorem is referenced by:  gpgvtxdg3  48011
  Copyright terms: Public domain W3C validator