![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgcubic | Structured version Visualization version GIF version |
Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 47925), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
Ref | Expression |
---|---|
gpgnbgr.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
gpgnbgr.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
gpgnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
gpgnbgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
Ref | Expression |
---|---|
gpgcubic | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
2 | gpgnbgr.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
3 | gpgnbgr.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
4 | gpgnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
5 | 1, 2, 3, 4 | gpgvtxel 47895 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
6 | 5 | biimp3a 1469 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉) |
7 | elpri 4671 | . . . . . . 7 ⊢ (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1)) | |
8 | opeq1 4898 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) | |
9 | 8 | eqeq2d 2751 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
11 | c0ex 11287 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
12 | vex 3492 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
13 | 11, 12 | op1std 8043 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
14 | gpgnbgr.u | . . . . . . . . . . . . . . 15 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
15 | 2, 3, 4, 14 | gpg3nbgrvtx0 47919 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) |
16 | 15 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)))) |
17 | 16 | 3imp 1111 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)) |
18 | 13, 17 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
20 | 10, 19 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
21 | 20 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
22 | opeq1 4898 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) | |
23 | 22 | eqeq2d 2751 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
25 | 1ex 11289 | . . . . . . . . . . . . 13 ⊢ 1 ∈ V | |
26 | 25, 12 | op1std 8043 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
27 | 2, 3, 4, 14 | gpg3nbgrvtx1 47921 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) |
28 | 27 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)))) |
29 | 28 | 3imp 1111 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)) |
30 | 26, 29 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
32 | 24, 31 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
33 | 32 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 1 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
34 | 21, 33 | jaoi 856 | . . . . . . 7 ⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
35 | 7, 34 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
36 | 35 | impcom 407 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
37 | 36 | a1d 25 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
38 | 37 | expimpd 453 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
39 | 38 | rexlimdvv 3218 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
40 | 6, 39 | mpd 15 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {cpr 4650 〈cop 4654 ‘cfv 6576 (class class class)co 7451 1st c1st 8031 0cc0 11187 1c1 11188 / cdiv 11952 2c2 12353 3c3 12354 ℤ≥cuz 12910 ..^cfzo 13722 ⌈cceil 13858 ♯chash 14396 Vtxcvtx 29051 NeighbVtx cnbgr 29387 gPetersenGr cgpg 47889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5304 ax-sep 5318 ax-nul 5325 ax-pow 5384 ax-pr 5448 ax-un 7773 ax-cnex 11243 ax-resscn 11244 ax-1cn 11245 ax-icn 11246 ax-addcl 11247 ax-addrcl 11248 ax-mulcl 11249 ax-mulrcl 11250 ax-mulcom 11251 ax-addass 11252 ax-mulass 11253 ax-distr 11254 ax-i2m1 11255 ax-1ne0 11256 ax-1rid 11257 ax-rnegex 11258 ax-rrecex 11259 ax-cnre 11260 ax-pre-lttri 11261 ax-pre-lttrn 11262 ax-pre-ltadd 11263 ax-pre-mulgt0 11264 ax-pre-sup 11265 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4933 df-int 4972 df-iun 5018 df-br 5168 df-opab 5230 df-mpt 5251 df-tr 5285 df-id 5594 df-eprel 5600 df-po 5608 df-so 5609 df-fr 5653 df-we 5655 df-xp 5707 df-rel 5708 df-cnv 5709 df-co 5710 df-dm 5711 df-rn 5712 df-res 5713 df-ima 5714 df-pred 6335 df-ord 6401 df-on 6402 df-lim 6403 df-suc 6404 df-iota 6528 df-fun 6578 df-fn 6579 df-f 6580 df-f1 6581 df-fo 6582 df-f1o 6583 df-fv 6584 df-riota 7407 df-ov 7454 df-oprab 7455 df-mpo 7456 df-om 7907 df-1st 8033 df-2nd 8034 df-frecs 8325 df-wrecs 8356 df-recs 8430 df-rdg 8469 df-1o 8525 df-2o 8526 df-oadd 8529 df-er 8766 df-en 9007 df-dom 9008 df-sdom 9009 df-fin 9010 df-sup 9514 df-inf 9515 df-dju 9973 df-card 10011 df-pnf 11329 df-mnf 11330 df-xr 11331 df-ltxr 11332 df-le 11333 df-sub 11526 df-neg 11527 df-div 11953 df-nn 12299 df-2 12361 df-3 12362 df-4 12363 df-5 12364 df-6 12365 df-7 12366 df-8 12367 df-9 12368 df-n0 12559 df-xnn0 12632 df-z 12646 df-dec 12766 df-uz 12911 df-rp 13067 df-ico 13424 df-fz 13579 df-fzo 13723 df-fl 13859 df-ceil 13860 df-mod 13937 df-hash 14397 df-dvds 16320 df-struct 17214 df-slot 17249 df-ndx 17261 df-base 17279 df-edgf 29042 df-vtx 29053 df-iedg 29054 df-edg 29103 df-upgr 29137 df-umgr 29138 df-usgr 29206 df-nbgr 29388 df-gpg 47890 |
This theorem is referenced by: gpgvtxdg3 47925 |
Copyright terms: Public domain | W3C validator |