| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gpgcubic | Structured version Visualization version GIF version | ||
| Description: Every generalized Petersen graph is a cubic graph, i.e., it is a 3-regular graph, i.e., every vertex has degree 3 (see gpgvtxdg3 48011), i.e., every vertex has exactly three (different) neighbors. (Contributed by AV, 3-Sep-2025.) |
| Ref | Expression |
|---|---|
| gpgnbgr.j | ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
| gpgnbgr.g | ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
| gpgnbgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| gpgnbgr.u | ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) |
| Ref | Expression |
|---|---|
| gpgcubic | ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (0..^𝑁) = (0..^𝑁) | |
| 2 | gpgnbgr.j | . . . 4 ⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) | |
| 3 | gpgnbgr.g | . . . 4 ⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) | |
| 4 | gpgnbgr.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 1, 2, 3, 4 | gpgvtxel 47978 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
| 6 | 5 | biimp3a 1470 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉) |
| 7 | elpri 4629 | . . . . . . 7 ⊢ (𝑥 ∈ {0, 1} → (𝑥 = 0 ∨ 𝑥 = 1)) | |
| 8 | opeq1 4853 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → 〈𝑥, 𝑦〉 = 〈0, 𝑦〉) | |
| 9 | 8 | eqeq2d 2745 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 10 | 9 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈0, 𝑦〉)) |
| 11 | c0ex 11237 | . . . . . . . . . . . . 13 ⊢ 0 ∈ V | |
| 12 | vex 3467 | . . . . . . . . . . . . 13 ⊢ 𝑦 ∈ V | |
| 13 | 11, 12 | op1std 8006 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈0, 𝑦〉 → (1st ‘𝑋) = 0) |
| 14 | gpgnbgr.u | . . . . . . . . . . . . . . 15 ⊢ 𝑈 = (𝐺 NeighbVtx 𝑋) | |
| 15 | 2, 3, 4, 14 | gpg3nbgrvtx0 48005 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 0)) → (♯‘𝑈) = 3) |
| 16 | 15 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)))) |
| 17 | 16 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 0 → (♯‘𝑈) = 3)) |
| 18 | 13, 17 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 19 | 18 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈0, 𝑦〉 → (♯‘𝑈) = 3)) |
| 20 | 10, 19 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 21 | 20 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 0 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 22 | opeq1 4853 | . . . . . . . . . . . 12 ⊢ (𝑥 = 1 → 〈𝑥, 𝑦〉 = 〈1, 𝑦〉) | |
| 23 | 22 | eqeq2d 2745 | . . . . . . . . . . 11 ⊢ (𝑥 = 1 → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 ↔ 𝑋 = 〈1, 𝑦〉)) |
| 25 | 1ex 11239 | . . . . . . . . . . . . 13 ⊢ 1 ∈ V | |
| 26 | 25, 12 | op1std 8006 | . . . . . . . . . . . 12 ⊢ (𝑋 = 〈1, 𝑦〉 → (1st ‘𝑋) = 1) |
| 27 | 2, 3, 4, 14 | gpg3nbgrvtx1 48007 | . . . . . . . . . . . . . 14 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑋 ∈ 𝑉 ∧ (1st ‘𝑋) = 1)) → (♯‘𝑈) = 3) |
| 28 | 27 | exp43 436 | . . . . . . . . . . . . 13 ⊢ (𝑁 ∈ (ℤ≥‘3) → (𝐾 ∈ 𝐽 → (𝑋 ∈ 𝑉 → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)))) |
| 29 | 28 | 3imp 1110 | . . . . . . . . . . . 12 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((1st ‘𝑋) = 1 → (♯‘𝑈) = 3)) |
| 30 | 26, 29 | syl5 34 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 31 | 30 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈1, 𝑦〉 → (♯‘𝑈) = 3)) |
| 32 | 24, 31 | sylbid 240 | . . . . . . . . 9 ⊢ ((𝑥 = 1 ∧ (𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 33 | 32 | ex 412 | . . . . . . . 8 ⊢ (𝑥 = 1 → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 34 | 21, 33 | jaoi 857 | . . . . . . 7 ⊢ ((𝑥 = 0 ∨ 𝑥 = 1) → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 35 | 7, 34 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ {0, 1} → ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 36 | 35 | impcom 407 | . . . . 5 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 37 | 36 | a1d 25 | . . . 4 ⊢ (((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) ∧ 𝑥 ∈ {0, 1}) → (𝑦 ∈ (0..^𝑁) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 38 | 37 | expimpd 453 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → ((𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁)) → (𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3))) |
| 39 | 38 | rexlimdvv 3199 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (♯‘𝑈) = 3)) |
| 40 | 6, 39 | mpd 15 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘3) ∧ 𝐾 ∈ 𝐽 ∧ 𝑋 ∈ 𝑉) → (♯‘𝑈) = 3) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {cpr 4608 〈cop 4612 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 0cc0 11137 1c1 11138 / cdiv 11902 2c2 12303 3c3 12304 ℤ≥cuz 12860 ..^cfzo 13676 ⌈cceil 13813 ♯chash 14352 Vtxcvtx 28942 NeighbVtx cnbgr 29278 gPetersenGr cgpg 47972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-inf 9465 df-dju 9923 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-rp 13017 df-ico 13375 df-fz 13530 df-fzo 13677 df-fl 13814 df-ceil 13815 df-mod 13892 df-hash 14353 df-dvds 16274 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-edgf 28935 df-vtx 28944 df-iedg 28945 df-edg 28994 df-upgr 29028 df-umgr 29029 df-usgr 29097 df-nbgr 29279 df-gpg 47973 |
| This theorem is referenced by: gpgvtxdg3 48011 |
| Copyright terms: Public domain | W3C validator |