Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gpgvtx0 Structured version   Visualization version   GIF version

Theorem gpgvtx0 48057
Description: The outside vertices in a generalized Petersen graph 𝐺. (Contributed by AV, 30-Aug-2025.)
Hypotheses
Ref Expression
gpgvtx0.j 𝐽 = (1..^(⌈‘(𝑁 / 2)))
gpgvtx0.g 𝐺 = (𝑁 gPetersenGr 𝐾)
gpgvtx0.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
gpgvtx0 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))

Proof of Theorem gpgvtx0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (0..^𝑁) = (0..^𝑁)
2 gpgvtx0.j . . . 4 𝐽 = (1..^(⌈‘(𝑁 / 2)))
3 gpgvtx0.g . . . 4 𝐺 = (𝑁 gPetersenGr 𝐾)
4 gpgvtx0.v . . . 4 𝑉 = (Vtx‘𝐺)
51, 2, 3, 4gpgvtxel 48051 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩))
63fveq2i 6829 . . . . . . . 8 (Vtx‘𝐺) = (Vtx‘(𝑁 gPetersenGr 𝐾))
74, 6eqtri 2752 . . . . . . 7 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾))
8 eluz3nn 12809 . . . . . . . . 9 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
92, 1gpgvtx 48047 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
108, 9sylan 580 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
1110adantr 480 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁)))
127, 11eqtrid 2776 . . . . . 6 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑉 = ({0, 1} × (0..^𝑁)))
13 c0ex 11128 . . . . . . . . . . . . 13 0 ∈ V
1413prid1 4716 . . . . . . . . . . . 12 0 ∈ {0, 1}
1514a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 0 ∈ {0, 1})
16 elfzoelz 13581 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ)
1716peano2zd 12602 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → (𝑦 + 1) ∈ ℤ)
18 zmodfzo 13817 . . . . . . . . . . . 12 (((𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 + 1) mod 𝑁) ∈ (0..^𝑁))
1917, 8, 18syl2anr 597 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑦 + 1) mod 𝑁) ∈ (0..^𝑁))
2015, 19opelxpd 5662 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
21 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ (0..^𝑁))
2215, 21opelxpd 5662 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)))
23 1zzd 12525 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^𝑁) → 1 ∈ ℤ)
2416, 23zsubcld 12604 . . . . . . . . . . . 12 (𝑦 ∈ (0..^𝑁) → (𝑦 − 1) ∈ ℤ)
25 zmodfzo 13817 . . . . . . . . . . . 12 (((𝑦 − 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 − 1) mod 𝑁) ∈ (0..^𝑁))
2624, 8, 25syl2anr 597 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑦 − 1) mod 𝑁) ∈ (0..^𝑁))
2715, 26opelxpd 5662 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))
2820, 22, 273jca 1128 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 𝑦 ∈ (0..^𝑁)) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
2928ad2ant2rl 749 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
3029adantr 480 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
31 eleq2 2817 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
32 eleq2 2817 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨0, 𝑦⟩ ∈ 𝑉 ↔ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁))))
33 eleq2 2817 . . . . . . . . 9 (𝑉 = ({0, 1} × (0..^𝑁)) → (⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁))))
3431, 32, 333anbi123d 1438 . . . . . . . 8 (𝑉 = ({0, 1} × (0..^𝑁)) → ((⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
3534adantl 481 . . . . . . 7 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → ((⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, 𝑦⟩ ∈ ({0, 1} × (0..^𝑁)) ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ ({0, 1} × (0..^𝑁)))))
3630, 35mpbird 257 . . . . . 6 ((((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉))
3712, 36mpdan 687 . . . . 5 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉))
38 vex 3442 . . . . . . 7 𝑥 ∈ V
39 vex 3442 . . . . . . 7 𝑦 ∈ V
4038, 39op2ndd 7942 . . . . . 6 (𝑋 = ⟨𝑥, 𝑦⟩ → (2nd𝑋) = 𝑦)
41 oveq1 7360 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) + 1) = (𝑦 + 1))
4241oveq1d 7368 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) + 1) mod 𝑁) = ((𝑦 + 1) mod 𝑁))
4342opeq2d 4834 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ = ⟨0, ((𝑦 + 1) mod 𝑁)⟩)
4443eleq1d 2813 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉))
45 opeq2 4828 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨0, (2nd𝑋)⟩ = ⟨0, 𝑦⟩)
4645eleq1d 2813 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨0, (2nd𝑋)⟩ ∈ 𝑉 ↔ ⟨0, 𝑦⟩ ∈ 𝑉))
47 oveq1 7360 . . . . . . . . . 10 ((2nd𝑋) = 𝑦 → ((2nd𝑋) − 1) = (𝑦 − 1))
4847oveq1d 7368 . . . . . . . . 9 ((2nd𝑋) = 𝑦 → (((2nd𝑋) − 1) mod 𝑁) = ((𝑦 − 1) mod 𝑁))
4948opeq2d 4834 . . . . . . . 8 ((2nd𝑋) = 𝑦 → ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ = ⟨0, ((𝑦 − 1) mod 𝑁)⟩)
5049eleq1d 2813 . . . . . . 7 ((2nd𝑋) = 𝑦 → (⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉 ↔ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉))
5144, 46, 503anbi123d 1438 . . . . . 6 ((2nd𝑋) = 𝑦 → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉)))
5240, 51syl 17 . . . . 5 (𝑋 = ⟨𝑥, 𝑦⟩ → ((⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉) ↔ (⟨0, ((𝑦 + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, 𝑦⟩ ∈ 𝑉 ∧ ⟨0, ((𝑦 − 1) mod 𝑁)⟩ ∈ 𝑉)))
5337, 52syl5ibrcom 247 . . . 4 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = ⟨𝑥, 𝑦⟩ → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)))
5453rexlimdvva 3186 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = ⟨𝑥, 𝑦⟩ → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)))
555, 54sylbid 240 . 2 ((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) → (𝑋𝑉 → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉)))
5655imp 406 1 (((𝑁 ∈ (ℤ‘3) ∧ 𝐾𝐽) ∧ 𝑋𝑉) → (⟨0, (((2nd𝑋) + 1) mod 𝑁)⟩ ∈ 𝑉 ∧ ⟨0, (2nd𝑋)⟩ ∈ 𝑉 ∧ ⟨0, (((2nd𝑋) − 1) mod 𝑁)⟩ ∈ 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {cpr 4581  cop 4585   × cxp 5621  cfv 6486  (class class class)co 7353  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cmin 11366   / cdiv 11796  cn 12147  2c2 12202  3c3 12203  cz 12490  cuz 12754  ..^cfzo 13576  cceil 13714   mod cmo 13792  Vtxcvtx 28960   gPetersenGr cgpg 48044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-xnn0 12477  df-z 12491  df-dec 12611  df-uz 12755  df-rp 12913  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-hash 14257  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17140  df-edgf 28953  df-vtx 28962  df-gpg 48045
This theorem is referenced by:  gpgnbgrvtx0  48078  gpgnbgrvtx1  48079
  Copyright terms: Public domain W3C validator