Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . 4
⊢
(0..^𝑁) = (0..^𝑁) |
2 | | gpgvtx0.j |
. . . 4
⊢ 𝐽 = (1..^(⌈‘(𝑁 / 2))) |
3 | | gpgvtx0.g |
. . . 4
⊢ 𝐺 = (𝑁 gPetersenGr 𝐾) |
4 | | gpgvtx0.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
5 | 1, 2, 3, 4 | gpgvtxel 47895 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 ↔ ∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉)) |
6 | 3 | fveq2i 6926 |
. . . . . . . 8
⊢
(Vtx‘𝐺) =
(Vtx‘(𝑁 gPetersenGr
𝐾)) |
7 | 4, 6 | eqtri 2768 |
. . . . . . 7
⊢ 𝑉 = (Vtx‘(𝑁 gPetersenGr 𝐾)) |
8 | | eluzge3nn 12964 |
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
9 | 2, 1 | gpgvtx 47892 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
10 | 8, 9 | sylan 579 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
11 | 10 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (Vtx‘(𝑁 gPetersenGr 𝐾)) = ({0, 1} × (0..^𝑁))) |
12 | 7, 11 | eqtrid 2792 |
. . . . . 6
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → 𝑉 = ({0, 1} × (0..^𝑁))) |
13 | | c0ex 11287 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
14 | 13 | prid1 4787 |
. . . . . . . . . . . 12
⊢ 0 ∈
{0, 1} |
15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 0 ∈ {0, 1}) |
16 | | elfzoelz 13727 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0..^𝑁) → 𝑦 ∈ ℤ) |
17 | 16 | peano2zd 12757 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → (𝑦 + 1) ∈ ℤ) |
18 | | zmodfzo 13961 |
. . . . . . . . . . . 12
⊢ (((𝑦 + 1) ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑦 + 1) mod 𝑁) ∈ (0..^𝑁)) |
19 | 17, 8, 18 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑦 + 1) mod 𝑁) ∈ (0..^𝑁)) |
20 | 15, 19 | opelxpd 5740 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))) |
21 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 𝑦 ∈ (0..^𝑁)) |
22 | 15, 21 | opelxpd 5740 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 〈0, 𝑦〉 ∈ ({0, 1} × (0..^𝑁))) |
23 | | 1zzd 12680 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ (0..^𝑁) → 1 ∈ ℤ) |
24 | 16, 23 | zsubcld 12759 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (0..^𝑁) → (𝑦 − 1) ∈ ℤ) |
25 | | zmodfzo 13961 |
. . . . . . . . . . . 12
⊢ (((𝑦 − 1) ∈ ℤ ∧
𝑁 ∈ ℕ) →
((𝑦 − 1) mod 𝑁) ∈ (0..^𝑁)) |
26 | 24, 8, 25 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → ((𝑦 − 1) mod 𝑁) ∈ (0..^𝑁)) |
27 | 15, 26 | opelxpd 5740 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁))) |
28 | 20, 22, 27 | 3jca 1128 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝑦 ∈ (0..^𝑁)) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈0, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈0,
((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} ×
(0..^𝑁)))) |
29 | 28 | ad2ant2rl 748 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈0, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈0,
((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} ×
(0..^𝑁)))) |
30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈0, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈0,
((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} ×
(0..^𝑁)))) |
31 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ↔ 〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
32 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈0, 𝑦〉 ∈ 𝑉 ↔ 〈0, 𝑦〉 ∈ ({0, 1} × (0..^𝑁)))) |
33 | | eleq2 2833 |
. . . . . . . . 9
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → (〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉 ↔ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)))) |
34 | 31, 32, 33 | 3anbi123d 1436 |
. . . . . . . 8
⊢ (𝑉 = ({0, 1} × (0..^𝑁)) → ((〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉) ↔ (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈0, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈0,
((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} ×
(0..^𝑁))))) |
35 | 34 | adantl 481 |
. . . . . . 7
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → ((〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉) ↔ (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ ({0, 1} × (0..^𝑁)) ∧ 〈0, 𝑦〉 ∈ ({0, 1} ×
(0..^𝑁)) ∧ 〈0,
((𝑦 − 1) mod 𝑁)〉 ∈ ({0, 1} ×
(0..^𝑁))))) |
36 | 30, 35 | mpbird 257 |
. . . . . 6
⊢ ((((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) ∧ 𝑉 = ({0, 1} × (0..^𝑁))) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉)) |
37 | 12, 36 | mpdan 686 |
. . . . 5
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉)) |
38 | | vex 3492 |
. . . . . . 7
⊢ 𝑥 ∈ V |
39 | | vex 3492 |
. . . . . . 7
⊢ 𝑦 ∈ V |
40 | 38, 39 | op2ndd 8044 |
. . . . . 6
⊢ (𝑋 = 〈𝑥, 𝑦〉 → (2nd ‘𝑋) = 𝑦) |
41 | | oveq1 7458 |
. . . . . . . . . 10
⊢
((2nd ‘𝑋) = 𝑦 → ((2nd ‘𝑋) + 1) = (𝑦 + 1)) |
42 | 41 | oveq1d 7466 |
. . . . . . . . 9
⊢
((2nd ‘𝑋) = 𝑦 → (((2nd ‘𝑋) + 1) mod 𝑁) = ((𝑦 + 1) mod 𝑁)) |
43 | 42 | opeq2d 4905 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 = 〈0, ((𝑦 + 1) mod 𝑁)〉) |
44 | 43 | eleq1d 2829 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ↔ 〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉)) |
45 | | opeq2 4899 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈0, (2nd ‘𝑋)〉 = 〈0, 𝑦〉) |
46 | 45 | eleq1d 2829 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈0, (2nd
‘𝑋)〉 ∈
𝑉 ↔ 〈0, 𝑦〉 ∈ 𝑉)) |
47 | | oveq1 7458 |
. . . . . . . . . 10
⊢
((2nd ‘𝑋) = 𝑦 → ((2nd ‘𝑋) − 1) = (𝑦 − 1)) |
48 | 47 | oveq1d 7466 |
. . . . . . . . 9
⊢
((2nd ‘𝑋) = 𝑦 → (((2nd ‘𝑋) − 1) mod 𝑁) = ((𝑦 − 1) mod 𝑁)) |
49 | 48 | opeq2d 4905 |
. . . . . . . 8
⊢
((2nd ‘𝑋) = 𝑦 → 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 = 〈0, ((𝑦 − 1) mod 𝑁)〉) |
50 | 49 | eleq1d 2829 |
. . . . . . 7
⊢
((2nd ‘𝑋) = 𝑦 → (〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉 ↔ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉)) |
51 | 44, 46, 50 | 3anbi123d 1436 |
. . . . . 6
⊢
((2nd ‘𝑋) = 𝑦 → ((〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉) ↔ (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉))) |
52 | 40, 51 | syl 17 |
. . . . 5
⊢ (𝑋 = 〈𝑥, 𝑦〉 → ((〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉) ↔ (〈0, ((𝑦 + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, 𝑦〉 ∈ 𝑉 ∧ 〈0, ((𝑦 − 1) mod 𝑁)〉 ∈ 𝑉))) |
53 | 37, 52 | syl5ibrcom 247 |
. . . 4
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ (𝑥 ∈ {0, 1} ∧ 𝑦 ∈ (0..^𝑁))) → (𝑋 = 〈𝑥, 𝑦〉 → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉))) |
54 | 53 | rexlimdvva 3219 |
. . 3
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (∃𝑥 ∈ {0, 1}∃𝑦 ∈ (0..^𝑁)𝑋 = 〈𝑥, 𝑦〉 → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉))) |
55 | 5, 54 | sylbid 240 |
. 2
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) → (𝑋 ∈ 𝑉 → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉))) |
56 | 55 | imp 406 |
1
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐾 ∈ 𝐽) ∧ 𝑋 ∈ 𝑉) → (〈0, (((2nd
‘𝑋) + 1) mod 𝑁)〉 ∈ 𝑉 ∧ 〈0, (2nd ‘𝑋)〉 ∈ 𝑉 ∧ 〈0, (((2nd
‘𝑋) − 1) mod
𝑁)〉 ∈ 𝑉)) |