Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnpmtr | Structured version Visualization version GIF version |
Description: All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.) |
Ref | Expression |
---|---|
psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnpmtr | ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnval.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
2 | psgnval.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐷) | |
3 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 1, 2, 3 | symgtrf 18992 | . . . . 5 ⊢ 𝑇 ⊆ (Base‘𝐺) |
5 | 4 | sseli 3913 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 𝑃 ∈ (Base‘𝐺)) |
6 | 3 | gsumws1 18391 | . . . 4 ⊢ (𝑃 ∈ (Base‘𝐺) → (𝐺 Σg 〈“𝑃”〉) = 𝑃) |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑃 ∈ 𝑇 → (𝐺 Σg 〈“𝑃”〉) = 𝑃) |
8 | 7 | fveq2d 6760 | . 2 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (𝑁‘𝑃)) |
9 | 2, 3 | elbasfv 16846 | . . . . 5 ⊢ (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 𝐷 ∈ V) |
11 | s1cl 14235 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 〈“𝑃”〉 ∈ Word 𝑇) | |
12 | psgnval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
13 | 2, 1, 12 | psgnvalii 19032 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 〈“𝑃”〉 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (-1↑(♯‘〈“𝑃”〉))) |
14 | 10, 11, 13 | syl2anc 583 | . . 3 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (-1↑(♯‘〈“𝑃”〉))) |
15 | s1len 14239 | . . . . 5 ⊢ (♯‘〈“𝑃”〉) = 1 | |
16 | 15 | oveq2i 7266 | . . . 4 ⊢ (-1↑(♯‘〈“𝑃”〉)) = (-1↑1) |
17 | neg1cn 12017 | . . . . 5 ⊢ -1 ∈ ℂ | |
18 | exp1 13716 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑1) = -1) | |
19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ (-1↑1) = -1 |
20 | 16, 19 | eqtri 2766 | . . 3 ⊢ (-1↑(♯‘〈“𝑃”〉)) = -1 |
21 | 14, 20 | eqtrdi 2795 | . 2 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = -1) |
22 | 8, 21 | eqtr3d 2780 | 1 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 -cneg 11136 ↑cexp 13710 ♯chash 13972 Word cword 14145 〈“cs1 14228 Basecbs 16840 Σg cgsu 17068 SymGrpcsymg 18889 pmTrspcpmtr 18964 pmSgncpsgn 19012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-xor 1504 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-lsw 14194 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-reverse 14400 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-efmnd 18423 df-grp 18495 df-minusg 18496 df-subg 18667 df-ghm 18747 df-gim 18790 df-oppg 18865 df-symg 18890 df-pmtr 18965 df-psgn 19014 |
This theorem is referenced by: psgnprfval2 19046 pmtrodpm 20714 mdetralt 21665 psgnfzto1st 31274 cyc3evpm 31319 |
Copyright terms: Public domain | W3C validator |