MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnpmtr Structured version   Visualization version   GIF version

Theorem psgnpmtr 19419
Description: All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnpmtr (𝑃𝑇 → (𝑁𝑃) = -1)

Proof of Theorem psgnpmtr
StepHypRef Expression
1 psgnval.t . . . . . 6 𝑇 = ran (pmTrsp‘𝐷)
2 psgnval.g . . . . . 6 𝐺 = (SymGrp‘𝐷)
3 eqid 2732 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
41, 2, 3symgtrf 19378 . . . . 5 𝑇 ⊆ (Base‘𝐺)
54sseli 3978 . . . 4 (𝑃𝑇𝑃 ∈ (Base‘𝐺))
63gsumws1 18755 . . . 4 (𝑃 ∈ (Base‘𝐺) → (𝐺 Σg ⟨“𝑃”⟩) = 𝑃)
75, 6syl 17 . . 3 (𝑃𝑇 → (𝐺 Σg ⟨“𝑃”⟩) = 𝑃)
87fveq2d 6895 . 2 (𝑃𝑇 → (𝑁‘(𝐺 Σg ⟨“𝑃”⟩)) = (𝑁𝑃))
92, 3elbasfv 17154 . . . . 5 (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V)
105, 9syl 17 . . . 4 (𝑃𝑇𝐷 ∈ V)
11 s1cl 14556 . . . 4 (𝑃𝑇 → ⟨“𝑃”⟩ ∈ Word 𝑇)
12 psgnval.n . . . . 5 𝑁 = (pmSgn‘𝐷)
132, 1, 12psgnvalii 19418 . . . 4 ((𝐷 ∈ V ∧ ⟨“𝑃”⟩ ∈ Word 𝑇) → (𝑁‘(𝐺 Σg ⟨“𝑃”⟩)) = (-1↑(♯‘⟨“𝑃”⟩)))
1410, 11, 13syl2anc 584 . . 3 (𝑃𝑇 → (𝑁‘(𝐺 Σg ⟨“𝑃”⟩)) = (-1↑(♯‘⟨“𝑃”⟩)))
15 s1len 14560 . . . . 5 (♯‘⟨“𝑃”⟩) = 1
1615oveq2i 7422 . . . 4 (-1↑(♯‘⟨“𝑃”⟩)) = (-1↑1)
17 neg1cn 12330 . . . . 5 -1 ∈ ℂ
18 exp1 14037 . . . . 5 (-1 ∈ ℂ → (-1↑1) = -1)
1917, 18ax-mp 5 . . . 4 (-1↑1) = -1
2016, 19eqtri 2760 . . 3 (-1↑(♯‘⟨“𝑃”⟩)) = -1
2114, 20eqtrdi 2788 . 2 (𝑃𝑇 → (𝑁‘(𝐺 Σg ⟨“𝑃”⟩)) = -1)
228, 21eqtr3d 2774 1 (𝑃𝑇 → (𝑁𝑃) = -1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  Vcvv 3474  ran crn 5677  cfv 6543  (class class class)co 7411  cc 11110  1c1 11113  -cneg 11449  cexp 14031  chash 14294  Word cword 14468  ⟨“cs1 14549  Basecbs 17148   Σg cgsu 17390  SymGrpcsymg 19275  pmTrspcpmtr 19350  pmSgncpsgn 19398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-seq 13971  df-exp 14032  df-hash 14295  df-word 14469  df-lsw 14517  df-concat 14525  df-s1 14550  df-substr 14595  df-pfx 14625  df-splice 14704  df-reverse 14713  df-s2 14803  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-tset 17220  df-0g 17391  df-gsum 17392  df-mre 17534  df-mrc 17535  df-acs 17537  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-mhm 18705  df-submnd 18706  df-efmnd 18786  df-grp 18858  df-minusg 18859  df-subg 19039  df-ghm 19128  df-gim 19173  df-oppg 19251  df-symg 19276  df-pmtr 19351  df-psgn 19400
This theorem is referenced by:  psgnprfval2  19432  pmtrodpm  21369  mdetralt  22330  psgnfzto1st  32522  cyc3evpm  32567
  Copyright terms: Public domain W3C validator