| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znfi | Structured version Visualization version GIF version | ||
| Description: The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| zntos.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
| znhash.1 | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| znfi | ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zntos.y | . . . 4 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
| 2 | znhash.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 3 | 1, 2 | znhash 21501 | . . 3 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁) |
| 4 | nnnn0 12427 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
| 5 | 3, 4 | eqeltrd 2828 | . 2 ⊢ (𝑁 ∈ ℕ → (♯‘𝐵) ∈ ℕ0) |
| 6 | 2 | fvexi 6854 | . . 3 ⊢ 𝐵 ∈ V |
| 7 | hashclb 14301 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0)) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ (𝐵 ∈ Fin ↔ (♯‘𝐵) ∈ ℕ0) |
| 9 | 5, 8 | sylibr 234 | 1 ⊢ (𝑁 ∈ ℕ → 𝐵 ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 Fincfn 8895 ℕcn 12164 ℕ0cn0 12420 ♯chash 14273 Basecbs 17156 ℤ/nℤczn 21445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 ax-addf 11125 ax-mulf 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-rp 12930 df-fz 13447 df-fzo 13594 df-fl 13732 df-mod 13810 df-seq 13945 df-hash 14274 df-dvds 16200 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17381 df-imas 17448 df-qus 17449 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-nsg 19039 df-eqg 19040 df-ghm 19128 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-cring 20157 df-oppr 20258 df-dvdsr 20278 df-rhm 20393 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-lsp 20911 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-rsp 21152 df-2idl 21193 df-cnfld 21298 df-zring 21390 df-zrh 21446 df-zn 21449 |
| This theorem is referenced by: znfld 21503 dchrfi 27200 dchrabs 27205 dchrptlem1 27209 dchrptlem2 27210 dchrpt 27212 dchrsum 27214 dchrhash 27216 hashscontpowcl 42102 isnumbasgrplem3 43088 |
| Copyright terms: Public domain | W3C validator |