Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   GIF version

Theorem irrapxlem6 42783
Description: Lemma for irrapx1 42784. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ)
2 simpr1 1194 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎)
3 simpr3 1196 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))
42, 3jca 511 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
5 breq2 5170 . . . . . 6 (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎))
6 fvoveq1 7471 . . . . . . 7 (𝑦 = 𝑎 → (abs‘(𝑦𝐴)) = (abs‘(𝑎𝐴)))
7 fveq2 6920 . . . . . . . 8 (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎))
87oveq1d 7463 . . . . . . 7 (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2))
96, 8breq12d 5179 . . . . . 6 (𝑦 = 𝑎 → ((abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
105, 9anbi12d 631 . . . . 5 (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
1110elrab 3708 . . . 4 (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
121, 4, 11sylanbrc 582 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
13 simpr2 1195 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < 𝐵)
14 fvoveq1 7471 . . . . 5 (𝑥 = 𝑎 → (abs‘(𝑥𝐴)) = (abs‘(𝑎𝐴)))
1514breq1d 5176 . . . 4 (𝑥 = 𝑎 → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘(𝑎𝐴)) < 𝐵))
1615rspcev 3635 . . 3 ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
1712, 13, 16syl2anc 583 . 2 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
18 irrapxlem5 42782 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
1917, 18r19.29a 3168 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wrex 3076  {crab 3443   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184   < clt 11324  cmin 11520  -cneg 11521  2c2 12348  cq 13013  +crp 13057  cexp 14112  abscabs 15283  denomcdenom 16781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ico 13413  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783
This theorem is referenced by:  irrapx1  42784
  Copyright terms: Public domain W3C validator