Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapxlem6 | Structured version Visualization version GIF version |
Description: Lemma for irrapx1 40206. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
irrapxlem6 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 769 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ) | |
2 | simpr1 1195 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎) | |
3 | simpr3 1197 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)) | |
4 | 2, 3 | jca 515 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
5 | breq2 5031 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎)) | |
6 | fvoveq1 7187 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
7 | fveq2 6668 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎)) | |
8 | 7 | oveq1d 7179 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2)) |
9 | 6, 8 | breq12d 5040 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ((abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
10 | 5, 9 | anbi12d 634 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
11 | 10 | elrab 3585 | . . . 4 ⊢ (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
12 | 1, 4, 11 | sylanbrc 586 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
13 | simpr2 1196 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < 𝐵) | |
14 | fvoveq1 7187 | . . . . 5 ⊢ (𝑥 = 𝑎 → (abs‘(𝑥 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
15 | 14 | breq1d 5037 | . . . 4 ⊢ (𝑥 = 𝑎 → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ (abs‘(𝑎 − 𝐴)) < 𝐵)) |
16 | 15 | rspcev 3524 | . . 3 ⊢ ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎 − 𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
17 | 12, 13, 16 | syl2anc 587 | . 2 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
18 | irrapxlem5 40204 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) | |
19 | 17, 18 | r19.29a 3198 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 ∈ wcel 2113 ∃wrex 3054 {crab 3057 class class class wbr 5027 ‘cfv 6333 (class class class)co 7164 0cc0 10608 < clt 10746 − cmin 10941 -cneg 10942 2c2 11764 ℚcq 12423 ℝ+crp 12465 ↑cexp 13514 abscabs 14676 denomcdenom 16167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-oadd 8128 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-sup 8972 df-inf 8973 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-n0 11970 df-xnn0 12042 df-z 12056 df-uz 12318 df-q 12424 df-rp 12466 df-ico 12820 df-fz 12975 df-fl 13246 df-mod 13322 df-seq 13454 df-exp 13515 df-hash 13776 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-dvds 15693 df-gcd 15931 df-numer 16168 df-denom 16169 |
This theorem is referenced by: irrapx1 40206 |
Copyright terms: Public domain | W3C validator |