![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapxlem6 | Structured version Visualization version GIF version |
Description: Lemma for irrapx1 41337. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
irrapxlem6 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 767 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ) | |
2 | simpr1 1194 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎) | |
3 | simpr3 1196 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)) | |
4 | 2, 3 | jca 512 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
5 | breq2 5145 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎)) | |
6 | fvoveq1 7416 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
7 | fveq2 6878 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎)) | |
8 | 7 | oveq1d 7408 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2)) |
9 | 6, 8 | breq12d 5154 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ((abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
10 | 5, 9 | anbi12d 631 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
11 | 10 | elrab 3679 | . . . 4 ⊢ (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
12 | 1, 4, 11 | sylanbrc 583 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
13 | simpr2 1195 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < 𝐵) | |
14 | fvoveq1 7416 | . . . . 5 ⊢ (𝑥 = 𝑎 → (abs‘(𝑥 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
15 | 14 | breq1d 5151 | . . . 4 ⊢ (𝑥 = 𝑎 → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ (abs‘(𝑎 − 𝐴)) < 𝐵)) |
16 | 15 | rspcev 3609 | . . 3 ⊢ ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎 − 𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
17 | 12, 13, 16 | syl2anc 584 | . 2 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
18 | irrapxlem5 41335 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) | |
19 | 17, 18 | r19.29a 3161 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ∃wrex 3069 {crab 3431 class class class wbr 5141 ‘cfv 6532 (class class class)co 7393 0cc0 11092 < clt 11230 − cmin 11426 -cneg 11427 2c2 12249 ℚcq 12914 ℝ+crp 12956 ↑cexp 14009 abscabs 15163 denomcdenom 16652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-pre-sup 11170 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-1st 7957 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-oadd 8452 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9419 df-inf 9420 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-n0 12455 df-xnn0 12527 df-z 12541 df-uz 12805 df-q 12915 df-rp 12957 df-ico 13312 df-fz 13467 df-fl 13739 df-mod 13817 df-seq 13949 df-exp 14010 df-hash 14273 df-cj 15028 df-re 15029 df-im 15030 df-sqrt 15164 df-abs 15165 df-dvds 16180 df-gcd 16418 df-numer 16653 df-denom 16654 |
This theorem is referenced by: irrapx1 41337 |
Copyright terms: Public domain | W3C validator |