| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapxlem6 | Structured version Visualization version GIF version | ||
| Description: Lemma for irrapx1 42869. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
| Ref | Expression |
|---|---|
| irrapxlem6 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 768 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ) | |
| 2 | simpr1 1195 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎) | |
| 3 | simpr3 1197 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)) | |
| 4 | 2, 3 | jca 511 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
| 5 | breq2 5093 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎)) | |
| 6 | fvoveq1 7369 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
| 7 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎)) | |
| 8 | 7 | oveq1d 7361 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2)) |
| 9 | 6, 8 | breq12d 5102 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ((abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
| 10 | 5, 9 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
| 11 | 10 | elrab 3642 | . . . 4 ⊢ (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
| 12 | 1, 4, 11 | sylanbrc 583 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
| 13 | simpr2 1196 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < 𝐵) | |
| 14 | fvoveq1 7369 | . . . . 5 ⊢ (𝑥 = 𝑎 → (abs‘(𝑥 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
| 15 | 14 | breq1d 5099 | . . . 4 ⊢ (𝑥 = 𝑎 → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ (abs‘(𝑎 − 𝐴)) < 𝐵)) |
| 16 | 15 | rspcev 3572 | . . 3 ⊢ ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎 − 𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
| 17 | 12, 13, 16 | syl2anc 584 | . 2 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
| 18 | irrapxlem5 42867 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) | |
| 19 | 17, 18 | r19.29a 3140 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∃wrex 3056 {crab 3395 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 0cc0 11006 < clt 11146 − cmin 11344 -cneg 11345 2c2 12180 ℚcq 12846 ℝ+crp 12890 ↑cexp 13968 abscabs 15141 denomcdenom 16645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 |
| This theorem is referenced by: irrapx1 42869 |
| Copyright terms: Public domain | W3C validator |