Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > irrapxlem6 | Structured version Visualization version GIF version |
Description: Lemma for irrapx1 40566. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
irrapxlem6 | ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 765 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ) | |
2 | simpr1 1192 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎) | |
3 | simpr3 1194 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)) | |
4 | 2, 3 | jca 511 | . . . 4 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
5 | breq2 5074 | . . . . . 6 ⊢ (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎)) | |
6 | fvoveq1 7278 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → (abs‘(𝑦 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
7 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎)) | |
8 | 7 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2)) |
9 | 6, 8 | breq12d 5083 | . . . . . 6 ⊢ (𝑦 = 𝑎 → ((abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) |
10 | 5, 9 | anbi12d 630 | . . . . 5 ⊢ (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
11 | 10 | elrab 3617 | . . . 4 ⊢ (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2)))) |
12 | 1, 4, 11 | sylanbrc 582 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))}) |
13 | simpr2 1193 | . . 3 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎 − 𝐴)) < 𝐵) | |
14 | fvoveq1 7278 | . . . . 5 ⊢ (𝑥 = 𝑎 → (abs‘(𝑥 − 𝐴)) = (abs‘(𝑎 − 𝐴))) | |
15 | 14 | breq1d 5080 | . . . 4 ⊢ (𝑥 = 𝑎 → ((abs‘(𝑥 − 𝐴)) < 𝐵 ↔ (abs‘(𝑎 − 𝐴)) < 𝐵)) |
16 | 15 | rspcev 3552 | . . 3 ⊢ ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎 − 𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
17 | 12, 13, 16 | syl2anc 583 | . 2 ⊢ ((((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
18 | irrapxlem5 40564 | . 2 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎 − 𝐴)) < 𝐵 ∧ (abs‘(𝑎 − 𝐴)) < ((denom‘𝑎)↑-2))) | |
19 | 17, 18 | r19.29a 3217 | 1 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦 − 𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥 − 𝐴)) < 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∃wrex 3064 {crab 3067 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 < clt 10940 − cmin 11135 -cneg 11136 2c2 11958 ℚcq 12617 ℝ+crp 12659 ↑cexp 13710 abscabs 14873 denomcdenom 16366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-ico 13014 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-numer 16367 df-denom 16368 |
This theorem is referenced by: irrapx1 40566 |
Copyright terms: Public domain | W3C validator |