Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   GIF version

Theorem irrapxlem6 42800
Description: Lemma for irrapx1 42801. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ)
2 simpr1 1195 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎)
3 simpr3 1197 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))
42, 3jca 511 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
5 breq2 5096 . . . . . 6 (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎))
6 fvoveq1 7372 . . . . . . 7 (𝑦 = 𝑎 → (abs‘(𝑦𝐴)) = (abs‘(𝑎𝐴)))
7 fveq2 6822 . . . . . . . 8 (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎))
87oveq1d 7364 . . . . . . 7 (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2))
96, 8breq12d 5105 . . . . . 6 (𝑦 = 𝑎 → ((abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
105, 9anbi12d 632 . . . . 5 (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
1110elrab 3648 . . . 4 (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
121, 4, 11sylanbrc 583 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
13 simpr2 1196 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < 𝐵)
14 fvoveq1 7372 . . . . 5 (𝑥 = 𝑎 → (abs‘(𝑥𝐴)) = (abs‘(𝑎𝐴)))
1514breq1d 5102 . . . 4 (𝑥 = 𝑎 → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘(𝑎𝐴)) < 𝐵))
1615rspcev 3577 . . 3 ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
1712, 13, 16syl2anc 584 . 2 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
18 irrapxlem5 42799 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
1917, 18r19.29a 3137 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wrex 3053  {crab 3394   class class class wbr 5092  cfv 6482  (class class class)co 7349  0cc0 11009   < clt 11149  cmin 11347  -cneg 11348  2c2 12183  cq 12849  +crp 12893  cexp 13968  abscabs 15141  denomcdenom 16645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-ico 13254  df-fz 13411  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647
This theorem is referenced by:  irrapx1  42801
  Copyright terms: Public domain W3C validator