Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem6 Structured version   Visualization version   GIF version

Theorem irrapxlem6 42815
Description: Lemma for irrapx1 42816. Explicit description of a non-closed set. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
irrapxlem6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem6
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ ℚ)
2 simpr1 1195 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 0 < 𝑎)
3 simpr3 1197 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))
42, 3jca 511 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
5 breq2 5111 . . . . . 6 (𝑦 = 𝑎 → (0 < 𝑦 ↔ 0 < 𝑎))
6 fvoveq1 7410 . . . . . . 7 (𝑦 = 𝑎 → (abs‘(𝑦𝐴)) = (abs‘(𝑎𝐴)))
7 fveq2 6858 . . . . . . . 8 (𝑦 = 𝑎 → (denom‘𝑦) = (denom‘𝑎))
87oveq1d 7402 . . . . . . 7 (𝑦 = 𝑎 → ((denom‘𝑦)↑-2) = ((denom‘𝑎)↑-2))
96, 8breq12d 5120 . . . . . 6 (𝑦 = 𝑎 → ((abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2) ↔ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
105, 9anbi12d 632 . . . . 5 (𝑦 = 𝑎 → ((0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2)) ↔ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
1110elrab 3659 . . . 4 (𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ↔ (𝑎 ∈ ℚ ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))))
121, 4, 11sylanbrc 583 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → 𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))})
13 simpr2 1196 . . 3 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → (abs‘(𝑎𝐴)) < 𝐵)
14 fvoveq1 7410 . . . . 5 (𝑥 = 𝑎 → (abs‘(𝑥𝐴)) = (abs‘(𝑎𝐴)))
1514breq1d 5117 . . . 4 (𝑥 = 𝑎 → ((abs‘(𝑥𝐴)) < 𝐵 ↔ (abs‘(𝑎𝐴)) < 𝐵))
1615rspcev 3588 . . 3 ((𝑎 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} ∧ (abs‘(𝑎𝐴)) < 𝐵) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
1712, 13, 16syl2anc 584 . 2 ((((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ 𝑎 ∈ ℚ) ∧ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2))) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
18 irrapxlem5 42814 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑎 ∈ ℚ (0 < 𝑎 ∧ (abs‘(𝑎𝐴)) < 𝐵 ∧ (abs‘(𝑎𝐴)) < ((denom‘𝑎)↑-2)))
1917, 18r19.29a 3141 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) → ∃𝑥 ∈ {𝑦 ∈ ℚ ∣ (0 < 𝑦 ∧ (abs‘(𝑦𝐴)) < ((denom‘𝑦)↑-2))} (abs‘(𝑥𝐴)) < 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wrex 3053  {crab 3405   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cc0 11068   < clt 11208  cmin 11405  -cneg 11406  2c2 12241  cq 12907  +crp 12951  cexp 14026  abscabs 15200  denomcdenom 16704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706
This theorem is referenced by:  irrapx1  42816
  Copyright terms: Public domain W3C validator