| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isumadd | Structured version Visualization version GIF version | ||
| Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| isumadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isumadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isumadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| isumadd.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isumadd.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) |
| isumadd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
| isumadd.7 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| isumadd.8 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isumadd | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | isumadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | fveq2 6861 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | |
| 5 | 3, 4 | oveq12d 7408 | . . . . 5 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) + (𝐺‘𝑚)) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 6 | eqid 2730 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) | |
| 7 | ovex 7423 | . . . . 5 ⊢ ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ V | |
| 8 | 5, 6, 7 | fvmpt 6971 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 10 | isumadd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 11 | isumadd.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) | |
| 12 | 10, 11 | oveq12d 7408 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) = (𝐴 + 𝐵)) |
| 13 | 9, 12 | eqtrd 2765 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = (𝐴 + 𝐵)) |
| 14 | isumadd.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 15 | isumadd.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
| 16 | 14, 15 | addcld 11200 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 + 𝐵) ∈ ℂ) |
| 17 | isumadd.7 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 18 | 1, 2, 10, 14, 17 | isumclim2 15731 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
| 19 | seqex 13975 | . . . 4 ⊢ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V | |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V) |
| 21 | isumadd.8 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | |
| 22 | 1, 2, 11, 15, 21 | isumclim2 15731 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ 𝑍 𝐵) |
| 23 | 10, 14 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 24 | 1, 2, 23 | serf 14002 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
| 25 | 24 | ffvelcdmda 7059 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
| 26 | 11, 15 | eqeltrd 2829 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| 27 | 1, 2, 26 | serf 14002 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
| 28 | 27 | ffvelcdmda 7059 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
| 29 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
| 30 | 29, 1 | eleqtrdi 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 31 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑) | |
| 32 | elfzuz 13488 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 33 | 32, 1 | eleqtrrdi 2840 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
| 34 | 33 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘 ∈ 𝑍) |
| 35 | 31, 34, 23 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
| 36 | 31, 34, 26 | syl2anc 584 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) ∈ ℂ) |
| 37 | 34, 8 | syl 17 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
| 38 | 30, 35, 36, 37 | seradd 14016 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗))) |
| 39 | 1, 2, 18, 20, 22, 25, 28, 38 | climadd 15605 | . 2 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ⇝ (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| 40 | 1, 2, 13, 16, 39 | isumclim 15730 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 + caddc 11078 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 seqcseq 13973 ⇝ cli 15457 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: sumsplit 15741 binomcxplemnotnn0 44352 |
| Copyright terms: Public domain | W3C validator |