MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumadd Structured version   Visualization version   GIF version

Theorem isumadd 15788
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1 𝑍 = (ℤ𝑀)
isumadd.2 (𝜑𝑀 ∈ ℤ)
isumadd.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumadd.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumadd.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumadd.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
isumadd.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumadd.8 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumadd (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumadd
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2 𝑍 = (ℤ𝑀)
2 isumadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 fveq2 6881 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
4 fveq2 6881 . . . . . 6 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
53, 4oveq12d 7428 . . . . 5 (𝑚 = 𝑘 → ((𝐹𝑚) + (𝐺𝑚)) = ((𝐹𝑘) + (𝐺𝑘)))
6 eqid 2736 . . . . 5 (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))
7 ovex 7443 . . . . 5 ((𝐹𝑘) + (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6991 . . . 4 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
98adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
10 isumadd.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumadd.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
1210, 11oveq12d 7428 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) = (𝐴 + 𝐵))
139, 12eqtrd 2771 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = (𝐴 + 𝐵))
14 isumadd.4 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
15 isumadd.6 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
1614, 15addcld 11259 . 2 ((𝜑𝑘𝑍) → (𝐴 + 𝐵) ∈ ℂ)
17 isumadd.7 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
181, 2, 10, 14, 17isumclim2 15779 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
19 seqex 14026 . . . 4 seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V
2019a1i 11 . . 3 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V)
21 isumadd.8 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
221, 2, 11, 15, 21isumclim2 15779 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘𝑍 𝐵)
2310, 14eqeltrd 2835 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
241, 2, 23serf 14053 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
2524ffvelcdmda 7079 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
2611, 15eqeltrd 2835 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
271, 2, 26serf 14053 . . . 4 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
2827ffvelcdmda 7079 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
29 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 1eleqtrdi 2845 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 simpll 766 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
32 elfzuz 13542 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2846 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3433adantl 481 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3531, 34, 23syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3631, 34, 26syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
3734, 8syl 17 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
3830, 35, 36, 37seradd 14067 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗)))
391, 2, 18, 20, 22, 25, 28, 38climadd 15653 . 2 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ⇝ (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
401, 2, 13, 16, 39isumclim 15778 1 (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  cc 11132   + caddc 11137  cz 12593  cuz 12857  ...cfz 13529  seqcseq 14024  cli 15505  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708
This theorem is referenced by:  sumsplit  15789  binomcxplemnotnn0  44347
  Copyright terms: Public domain W3C validator