MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumadd Structured version   Visualization version   GIF version

Theorem isumadd 15671
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1 𝑍 = (ℤ𝑀)
isumadd.2 (𝜑𝑀 ∈ ℤ)
isumadd.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumadd.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumadd.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumadd.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
isumadd.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumadd.8 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumadd (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumadd
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2 𝑍 = (ℤ𝑀)
2 isumadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 fveq2 6822 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
4 fveq2 6822 . . . . . 6 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
53, 4oveq12d 7364 . . . . 5 (𝑚 = 𝑘 → ((𝐹𝑚) + (𝐺𝑚)) = ((𝐹𝑘) + (𝐺𝑘)))
6 eqid 2731 . . . . 5 (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))
7 ovex 7379 . . . . 5 ((𝐹𝑘) + (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6929 . . . 4 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
98adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
10 isumadd.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumadd.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
1210, 11oveq12d 7364 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) = (𝐴 + 𝐵))
139, 12eqtrd 2766 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = (𝐴 + 𝐵))
14 isumadd.4 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
15 isumadd.6 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
1614, 15addcld 11128 . 2 ((𝜑𝑘𝑍) → (𝐴 + 𝐵) ∈ ℂ)
17 isumadd.7 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
181, 2, 10, 14, 17isumclim2 15662 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
19 seqex 13907 . . . 4 seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V
2019a1i 11 . . 3 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V)
21 isumadd.8 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
221, 2, 11, 15, 21isumclim2 15662 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘𝑍 𝐵)
2310, 14eqeltrd 2831 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
241, 2, 23serf 13934 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
2524ffvelcdmda 7017 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
2611, 15eqeltrd 2831 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
271, 2, 26serf 13934 . . . 4 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
2827ffvelcdmda 7017 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
29 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 1eleqtrdi 2841 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 simpll 766 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
32 elfzuz 13417 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2842 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3433adantl 481 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3531, 34, 23syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3631, 34, 26syl2anc 584 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
3734, 8syl 17 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
3830, 35, 36, 37seradd 13948 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗)))
391, 2, 18, 20, 22, 25, 28, 38climadd 15536 . 2 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ⇝ (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
401, 2, 13, 16, 39isumclim 15661 1 (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cmpt 5172  dom cdm 5616  cfv 6481  (class class class)co 7346  cc 11001   + caddc 11006  cz 12465  cuz 12729  ...cfz 13404  seqcseq 13905  cli 15388  Σcsu 15590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591
This theorem is referenced by:  sumsplit  15672  binomcxplemnotnn0  44388
  Copyright terms: Public domain W3C validator