Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isumadd | Structured version Visualization version GIF version |
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.) |
Ref | Expression |
---|---|
isumadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumadd.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumadd.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isumadd.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) |
isumadd.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
isumadd.7 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
isumadd.8 | ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumadd | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | fveq2 6717 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐹‘𝑚) = (𝐹‘𝑘)) | |
4 | fveq2 6717 | . . . . . 6 ⊢ (𝑚 = 𝑘 → (𝐺‘𝑚) = (𝐺‘𝑘)) | |
5 | 3, 4 | oveq12d 7231 | . . . . 5 ⊢ (𝑚 = 𝑘 → ((𝐹‘𝑚) + (𝐺‘𝑚)) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
6 | eqid 2737 | . . . . 5 ⊢ (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) = (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))) | |
7 | ovex 7246 | . . . . 5 ⊢ ((𝐹‘𝑘) + (𝐺‘𝑘)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6818 | . . . 4 ⊢ (𝑘 ∈ 𝑍 → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
9 | 8 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
10 | isumadd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
11 | isumadd.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = 𝐵) | |
12 | 10, 11 | oveq12d 7231 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) + (𝐺‘𝑘)) = (𝐴 + 𝐵)) |
13 | 9, 12 | eqtrd 2777 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = (𝐴 + 𝐵)) |
14 | isumadd.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
15 | isumadd.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) | |
16 | 14, 15 | addcld 10852 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴 + 𝐵) ∈ ℂ) |
17 | isumadd.7 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
18 | 1, 2, 10, 14, 17 | isumclim2 15322 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑍 𝐴) |
19 | seqex 13576 | . . . 4 ⊢ seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V | |
20 | 19 | a1i 11 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ∈ V) |
21 | isumadd.8 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ ) | |
22 | 1, 2, 11, 15, 21 | isumclim2 15322 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘 ∈ 𝑍 𝐵) |
23 | 10, 14 | eqeltrd 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
24 | 1, 2, 23 | serf 13604 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
25 | 24 | ffvelrnda 6904 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ) |
26 | 11, 15 | eqeltrd 2838 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
27 | 1, 2, 26 | serf 13604 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ) |
28 | 27 | ffvelrnda 6904 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ) |
29 | simpr 488 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
30 | 29, 1 | eleqtrdi 2848 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
31 | simpll 767 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑) | |
32 | elfzuz 13108 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
33 | 32, 1 | eleqtrrdi 2849 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ 𝑍) |
34 | 33 | adantl 485 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘 ∈ 𝑍) |
35 | 31, 34, 23 | syl2anc 587 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
36 | 31, 34, 26 | syl2anc 587 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺‘𝑘) ∈ ℂ) |
37 | 34, 8 | syl 17 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))‘𝑘) = ((𝐹‘𝑘) + (𝐺‘𝑘))) |
38 | 30, 35, 36, 37 | seradd 13618 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗))) |
39 | 1, 2, 18, 20, 22, 25, 28, 38 | climadd 15193 | . 2 ⊢ (𝜑 → seq𝑀( + , (𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚) + (𝐺‘𝑚)))) ⇝ (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
40 | 1, 2, 13, 16, 39 | isumclim 15321 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 (𝐴 + 𝐵) = (Σ𝑘 ∈ 𝑍 𝐴 + Σ𝑘 ∈ 𝑍 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ↦ cmpt 5135 dom cdm 5551 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 + caddc 10732 ℤcz 12176 ℤ≥cuz 12438 ...cfz 13095 seqcseq 13574 ⇝ cli 15045 Σcsu 15249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-sum 15250 |
This theorem is referenced by: sumsplit 15332 binomcxplemnotnn0 41647 |
Copyright terms: Public domain | W3C validator |