MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumadd Structured version   Visualization version   GIF version

Theorem isumadd 15407
Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
isumadd.1 𝑍 = (ℤ𝑀)
isumadd.2 (𝜑𝑀 ∈ ℤ)
isumadd.3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumadd.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isumadd.5 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
isumadd.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
isumadd.7 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
isumadd.8 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Assertion
Ref Expression
isumadd (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem isumadd
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isumadd.1 . 2 𝑍 = (ℤ𝑀)
2 isumadd.2 . 2 (𝜑𝑀 ∈ ℤ)
3 fveq2 6756 . . . . . 6 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
4 fveq2 6756 . . . . . 6 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
53, 4oveq12d 7273 . . . . 5 (𝑚 = 𝑘 → ((𝐹𝑚) + (𝐺𝑚)) = ((𝐹𝑘) + (𝐺𝑘)))
6 eqid 2738 . . . . 5 (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))
7 ovex 7288 . . . . 5 ((𝐹𝑘) + (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6857 . . . 4 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
98adantl 481 . . 3 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
10 isumadd.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
11 isumadd.5 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) = 𝐵)
1210, 11oveq12d 7273 . . 3 ((𝜑𝑘𝑍) → ((𝐹𝑘) + (𝐺𝑘)) = (𝐴 + 𝐵))
139, 12eqtrd 2778 . 2 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = (𝐴 + 𝐵))
14 isumadd.4 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
15 isumadd.6 . . 3 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
1614, 15addcld 10925 . 2 ((𝜑𝑘𝑍) → (𝐴 + 𝐵) ∈ ℂ)
17 isumadd.7 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
181, 2, 10, 14, 17isumclim2 15398 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ Σ𝑘𝑍 𝐴)
19 seqex 13651 . . . 4 seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V
2019a1i 11 . . 3 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ∈ V)
21 isumadd.8 . . . 4 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
221, 2, 11, 15, 21isumclim2 15398 . . 3 (𝜑 → seq𝑀( + , 𝐺) ⇝ Σ𝑘𝑍 𝐵)
2310, 14eqeltrd 2839 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
241, 2, 23serf 13679 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
2524ffvelrnda 6943 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℂ)
2611, 15eqeltrd 2839 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
271, 2, 26serf 13679 . . . 4 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
2827ffvelrnda 6943 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
29 simpr 484 . . . . 5 ((𝜑𝑗𝑍) → 𝑗𝑍)
3029, 1eleqtrdi 2849 . . . 4 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
31 simpll 763 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
32 elfzuz 13181 . . . . . . 7 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2850 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
3433adantl 481 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
3531, 34, 23syl2anc 583 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℂ)
3631, 34, 26syl2anc 583 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
3734, 8syl 17 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) + (𝐺𝑘)))
3830, 35, 36, 37seradd 13693 . . 3 ((𝜑𝑗𝑍) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚))))‘𝑗) = ((seq𝑀( + , 𝐹)‘𝑗) + (seq𝑀( + , 𝐺)‘𝑗)))
391, 2, 18, 20, 22, 25, 28, 38climadd 15269 . 2 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) + (𝐺𝑚)))) ⇝ (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
401, 2, 13, 16, 39isumclim 15397 1 (𝜑 → Σ𝑘𝑍 (𝐴 + 𝐵) = (Σ𝑘𝑍 𝐴 + Σ𝑘𝑍 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cmpt 5153  dom cdm 5580  cfv 6418  (class class class)co 7255  cc 10800   + caddc 10805  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649  cli 15121  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  sumsplit  15408  binomcxplemnotnn0  41863
  Copyright terms: Public domain W3C validator