Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isum1p | Structured version Visualization version GIF version |
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isum1p.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isum1p.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isum1p.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isum1p.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
isum1p.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isum1p | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isum1p.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | eqid 2738 | . . 3 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(𝑀 + 1)) | |
3 | isum1p.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | uzid 12597 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
6 | peano2uz 12641 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
8 | 7, 1 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ 𝑍) |
9 | isum1p.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
10 | isum1p.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
11 | isum1p.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
12 | 1, 2, 8, 9, 10, 11 | isumsplit 15552 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
13 | 3 | zcnd 12427 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
14 | ax-1cn 10929 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
15 | pncan 11227 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀) | |
16 | 13, 14, 15 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
17 | 16 | oveq2d 7291 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀)) |
18 | 17 | sumeq1d 15413 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
19 | elfzuz 13252 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
20 | 19, 1 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ 𝑍) |
21 | 20, 9 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐹‘𝑘) = 𝐴) |
22 | 21 | sumeq2dv 15415 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
23 | fveq2 6774 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | |
24 | 23 | eleq1d 2823 | . . . . . 6 ⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
25 | 9, 10 | eqeltrd 2839 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
26 | 25 | ralrimiva 3103 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
27 | 5, 1 | eleqtrrdi 2850 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
28 | 24, 26, 27 | rspcdva 3562 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
29 | 23 | fsum1 15459 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝐹‘𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
30 | 3, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
31 | 18, 22, 30 | 3eqtr2d 2784 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹‘𝑀)) |
32 | 31 | oveq1d 7290 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
33 | 12, 32 | eqtrd 2778 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 seqcseq 13721 ⇝ cli 15193 Σcsu 15397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 |
This theorem is referenced by: isumnn0nn 15554 efsep 15819 rpnnen2lem9 15931 binomcxplemnotnn0 41974 |
Copyright terms: Public domain | W3C validator |