MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isum1p Structured version   Visualization version   GIF version

Theorem isum1p 15755
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1 𝑍 = (ℤ𝑀)
isum1p.3 (𝜑𝑀 ∈ ℤ)
isum1p.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isum1p.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isum1p.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isum1p (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3 𝑍 = (ℤ𝑀)
2 eqid 2733 . . 3 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
3 isum1p.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 uzid 12757 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 12805 . . . . 5 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 17 . . . 4 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
87, 1eleqtrrdi 2844 . . 3 (𝜑 → (𝑀 + 1) ∈ 𝑍)
9 isum1p.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isum1p.5 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
11 isum1p.6 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 8, 9, 10, 11isumsplit 15754 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
133zcnd 12588 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
14 ax-1cn 11075 . . . . . . 7 1 ∈ ℂ
15 pncan 11377 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
1613, 14, 15sylancl 586 . . . . . 6 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1716oveq2d 7371 . . . . 5 (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀))
1817sumeq1d 15614 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
19 elfzuz 13427 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ𝑀))
2019, 1eleqtrrdi 2844 . . . . . 6 (𝑘 ∈ (𝑀...𝑀) → 𝑘𝑍)
2120, 9sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑀)) → (𝐹𝑘) = 𝐴)
2221sumeq2dv 15616 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
23 fveq2 6831 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2423eleq1d 2818 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
259, 10eqeltrd 2833 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2625ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
275, 1eleqtrrdi 2844 . . . . . 6 (𝜑𝑀𝑍)
2824, 26, 27rspcdva 3574 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
2923fsum1 15661 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐹𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
303, 28, 29syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
3118, 22, 303eqtr2d 2774 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹𝑀))
3231oveq1d 7370 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴) = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
3312, 32eqtrd 2768 1 (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  dom cdm 5621  cfv 6489  (class class class)co 7355  cc 11015  1c1 11018   + caddc 11020  cmin 11355  cz 12479  cuz 12742  ...cfz 13414  seqcseq 13915  cli 15398  Σcsu 15600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-z 12480  df-uz 12743  df-rp 12897  df-fz 13415  df-fzo 13562  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601
This theorem is referenced by:  isumnn0nn  15756  efsep  16026  rpnnen2lem9  16138  binomcxplemnotnn0  44513
  Copyright terms: Public domain W3C validator