MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isum1p Structured version   Visualization version   GIF version

Theorem isum1p 15807
Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isum1p.1 𝑍 = (ℤ𝑀)
isum1p.3 (𝜑𝑀 ∈ ℤ)
isum1p.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isum1p.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
isum1p.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isum1p (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isum1p
StepHypRef Expression
1 isum1p.1 . . 3 𝑍 = (ℤ𝑀)
2 eqid 2729 . . 3 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
3 isum1p.3 . . . . . 6 (𝜑𝑀 ∈ ℤ)
4 uzid 12808 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
53, 4syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
6 peano2uz 12860 . . . . 5 (𝑀 ∈ (ℤ𝑀) → (𝑀 + 1) ∈ (ℤ𝑀))
75, 6syl 17 . . . 4 (𝜑 → (𝑀 + 1) ∈ (ℤ𝑀))
87, 1eleqtrrdi 2839 . . 3 (𝜑 → (𝑀 + 1) ∈ 𝑍)
9 isum1p.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
10 isum1p.5 . . 3 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
11 isum1p.6 . . 3 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
121, 2, 8, 9, 10, 11isumsplit 15806 . 2 (𝜑 → Σ𝑘𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
133zcnd 12639 . . . . . . 7 (𝜑𝑀 ∈ ℂ)
14 ax-1cn 11126 . . . . . . 7 1 ∈ ℂ
15 pncan 11427 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀)
1613, 14, 15sylancl 586 . . . . . 6 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1716oveq2d 7403 . . . . 5 (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀))
1817sumeq1d 15666 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
19 elfzuz 13481 . . . . . . 7 (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ𝑀))
2019, 1eleqtrrdi 2839 . . . . . 6 (𝑘 ∈ (𝑀...𝑀) → 𝑘𝑍)
2120, 9sylan2 593 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑀)) → (𝐹𝑘) = 𝐴)
2221sumeq2dv 15668 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴)
23 fveq2 6858 . . . . . . 7 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2423eleq1d 2813 . . . . . 6 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑀) ∈ ℂ))
259, 10eqeltrd 2828 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
2625ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
275, 1eleqtrrdi 2839 . . . . . 6 (𝜑𝑀𝑍)
2824, 26, 27rspcdva 3589 . . . . 5 (𝜑 → (𝐹𝑀) ∈ ℂ)
2923fsum1 15713 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝐹𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
303, 28, 29syl2anc 584 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹𝑘) = (𝐹𝑀))
3118, 22, 303eqtr2d 2770 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹𝑀))
3231oveq1d 7402 . 2 (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴) = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
3312, 32eqtrd 2764 1 (𝜑 → Σ𝑘𝑍 𝐴 = ((𝐹𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  dom cdm 5638  cfv 6511  (class class class)co 7387  cc 11066  1c1 11069   + caddc 11071  cmin 11405  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  cli 15450  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653
This theorem is referenced by:  isumnn0nn  15808  efsep  16078  rpnnen2lem9  16190  binomcxplemnotnn0  44345
  Copyright terms: Public domain W3C validator