| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isum1p | Structured version Visualization version GIF version | ||
| Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
| Ref | Expression |
|---|---|
| isum1p.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| isum1p.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| isum1p.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
| isum1p.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| isum1p.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| Ref | Expression |
|---|---|
| isum1p | ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isum1p.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | eqid 2735 | . . 3 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘(𝑀 + 1)) | |
| 3 | isum1p.3 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | uzid 12867 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 12917 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘𝑀) → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀 + 1) ∈ (ℤ≥‘𝑀)) |
| 8 | 7, 1 | eleqtrrdi 2845 | . . 3 ⊢ (𝜑 → (𝑀 + 1) ∈ 𝑍) |
| 9 | isum1p.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
| 10 | isum1p.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 11 | isum1p.6 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
| 12 | 1, 2, 8, 9, 10, 11 | isumsplit 15856 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| 13 | 3 | zcnd 12698 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 14 | ax-1cn 11187 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 15 | pncan 11488 | . . . . . . 7 ⊢ ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑀 + 1) − 1) = 𝑀) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 17 | 16 | oveq2d 7421 | . . . . 5 ⊢ (𝜑 → (𝑀...((𝑀 + 1) − 1)) = (𝑀...𝑀)) |
| 18 | 17 | sumeq1d 15716 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
| 19 | elfzuz 13537 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 20 | 19, 1 | eleqtrrdi 2845 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...𝑀) → 𝑘 ∈ 𝑍) |
| 21 | 20, 9 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑀)) → (𝐹‘𝑘) = 𝐴) |
| 22 | 21 | sumeq2dv 15718 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = Σ𝑘 ∈ (𝑀...𝑀)𝐴) |
| 23 | fveq2 6876 | . . . . . . 7 ⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | |
| 24 | 23 | eleq1d 2819 | . . . . . 6 ⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑀) ∈ ℂ)) |
| 25 | 9, 10 | eqeltrd 2834 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| 26 | 25 | ralrimiva 3132 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 27 | 5, 1 | eleqtrrdi 2845 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
| 28 | 24, 26, 27 | rspcdva 3602 | . . . . 5 ⊢ (𝜑 → (𝐹‘𝑀) ∈ ℂ) |
| 29 | 23 | fsum1 15763 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ (𝐹‘𝑀) ∈ ℂ) → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
| 30 | 3, 28, 29 | syl2anc 584 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑀)(𝐹‘𝑘) = (𝐹‘𝑀)) |
| 31 | 18, 22, 30 | 3eqtr2d 2776 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 = (𝐹‘𝑀)) |
| 32 | 31 | oveq1d 7420 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...((𝑀 + 1) − 1))𝐴 + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| 33 | 12, 32 | eqtrd 2770 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 𝐴 = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 − cmin 11466 ℤcz 12588 ℤ≥cuz 12852 ...cfz 13524 seqcseq 14019 ⇝ cli 15500 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: isumnn0nn 15858 efsep 16128 rpnnen2lem9 16240 binomcxplemnotnn0 44380 |
| Copyright terms: Public domain | W3C validator |