Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f2 Structured version   Visualization version   GIF version

Theorem lkr0f2 39270
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
lkr0f2.v 𝑉 = (Base‘𝑊)
lkr0f2.f 𝐹 = (LFnl‘𝑊)
lkr0f2.k 𝐾 = (LKer‘𝑊)
lkr0f2.d 𝐷 = (LDual‘𝑊)
lkr0f2.o 0 = (0g𝐷)
lkr0f2.w (𝜑𝑊 ∈ LMod)
lkr0f2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lkr0f2 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = 0 ))

Proof of Theorem lkr0f2
StepHypRef Expression
1 lkr0f2.w . . 3 (𝜑𝑊 ∈ LMod)
2 lkr0f2.g . . 3 (𝜑𝐺𝐹)
3 eqid 2731 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2731 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 lkr0f2.v . . . 4 𝑉 = (Base‘𝑊)
6 lkr0f2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkr0f2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7lkr0f 39203 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
91, 2, 8syl2anc 584 . 2 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
10 lkr0f2.d . . . 4 𝐷 = (LDual‘𝑊)
11 lkr0f2.o . . . 4 0 = (0g𝐷)
125, 3, 4, 10, 11, 1ldual0v 39259 . . 3 (𝜑0 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
1312eqeq2d 2742 . 2 (𝜑 → (𝐺 = 0𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
149, 13bitr4d 282 1 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  {csn 4573   × cxp 5612  cfv 6481  Basecbs 17120  Scalarcsca 17164  0gc0g 17343  LModclmod 20793  LFnlclfn 39166  LKerclk 39194  LDualcld 39232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-lmod 20795  df-lfl 39167  df-lkr 39195  df-ldual 39233
This theorem is referenced by:  lkrpssN  39272  lcfl8b  41613  lcfrlem9  41659
  Copyright terms: Public domain W3C validator