Step | Hyp | Ref
| Expression |
1 | | hgmapval1.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | hgmapval1.u |
. . 3
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
3 | | eqid 2738 |
. . 3
⊢
(Base‘𝑈) =
(Base‘𝑈) |
4 | | eqid 2738 |
. . 3
⊢
(0g‘𝑈) = (0g‘𝑈) |
5 | | hgmapval1.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | 1, 2, 3, 4, 5 | dvh1dim 39383 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝑈)𝑥 ≠ (0g‘𝑈)) |
7 | | hgmapval1.r |
. . . . . . . . 9
⊢ 𝑅 = (Scalar‘𝑈) |
8 | | hgmapval1.i |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
9 | | eqid 2738 |
. . . . . . . . 9
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(Scalar‘((LCDual‘𝐾)‘𝑊)) = (Scalar‘((LCDual‘𝐾)‘𝑊)) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(1r‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(1r‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
12 | 1, 2, 7, 8, 9, 10,
11, 5 | lcd1 39550 |
. . . . . . . 8
⊢ (𝜑 →
(1r‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = 1 ) |
13 | 12 | oveq1d 7270 |
. . . . . . 7
⊢ (𝜑 →
((1r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = ( 1 (
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) |
14 | 13 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) →
((1r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = ( 1 (
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) |
15 | 1, 9, 5 | lcdlmod 39533 |
. . . . . . . 8
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
17 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
18 | | eqid 2738 |
. . . . . . . 8
⊢
((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) |
19 | 5 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
20 | | simp2 1135 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → 𝑥 ∈ (Base‘𝑈)) |
21 | 1, 2, 3, 9, 17, 18, 19, 20 | hdmapcl 39771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑥) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
22 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠
‘((LCDual‘𝐾)‘𝑊)) |
23 | 17, 10, 22, 11 | lmodvs1 20066 |
. . . . . . 7
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (((HDMap‘𝐾)‘𝑊)‘𝑥) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) →
((1r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = (((HDMap‘𝐾)‘𝑊)‘𝑥)) |
24 | 16, 21, 23 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) →
((1r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = (((HDMap‘𝐾)‘𝑊)‘𝑥)) |
25 | 14, 24 | eqtr3d 2780 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ( 1 (
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = (((HDMap‘𝐾)‘𝑊)‘𝑥)) |
26 | 1, 2, 5 | dvhlmod 39051 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | 26 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
28 | | eqid 2738 |
. . . . . . . 8
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
29 | 3, 7, 28, 8 | lmodvs1 20066 |
. . . . . . 7
⊢ ((𝑈 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑈)) → ( 1 (
·𝑠 ‘𝑈)𝑥) = 𝑥) |
30 | 27, 20, 29 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ( 1 (
·𝑠 ‘𝑈)𝑥) = 𝑥) |
31 | 30 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘( 1 (
·𝑠 ‘𝑈)𝑥)) = (((HDMap‘𝐾)‘𝑊)‘𝑥)) |
32 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
33 | | hgmapval1.g |
. . . . . 6
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
34 | 7 | lmodring 20046 |
. . . . . . . 8
⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
35 | 32, 8 | ringidcl 19722 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 1 ∈
(Base‘𝑅)) |
36 | 26, 34, 35 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
37 | 36 | 3ad2ant1 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → 1 ∈ (Base‘𝑅)) |
38 | 1, 2, 3, 28, 7, 32, 9, 22, 18, 33, 19, 20, 37 | hgmapvs 39832 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘( 1 (
·𝑠 ‘𝑈)𝑥)) = ((𝐺‘ 1 )(
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) |
39 | 25, 31, 38 | 3eqtr2rd 2785 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ((𝐺‘ 1 )(
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = ( 1 (
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) |
40 | | eqid 2738 |
. . . . 5
⊢
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
41 | | eqid 2738 |
. . . . 5
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) |
42 | 1, 9, 5 | lcdlvec 39532 |
. . . . . 6
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
43 | 42 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
44 | 1, 2, 7, 32, 33, 5, 36 | hgmapcl 39830 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘ 1 ) ∈ (Base‘𝑅)) |
45 | 1, 2, 7, 32, 9, 10, 40, 5 | lcdsbase 39541 |
. . . . . . 7
⊢ (𝜑 →
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) = (Base‘𝑅)) |
46 | 44, 45 | eleqtrrd 2842 |
. . . . . 6
⊢ (𝜑 → (𝐺‘ 1 ) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
47 | 46 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (𝐺‘ 1 ) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
48 | 36, 45 | eleqtrrd 2842 |
. . . . . 6
⊢ (𝜑 → 1 ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
49 | 48 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → 1 ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
50 | | simp3 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → 𝑥 ≠ (0g‘𝑈)) |
51 | 1, 2, 3, 4, 9, 41,
18, 19, 20 | hdmapeq0 39785 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑥) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑥 = (0g‘𝑈))) |
52 | 51 | necon3bid 2987 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑥) ≠
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑥 ≠ (0g‘𝑈))) |
53 | 50, 52 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑥) ≠
(0g‘((LCDual‘𝐾)‘𝑊))) |
54 | 17, 22, 10, 40, 41, 43, 47, 49, 21, 53 | lvecvscan2 20289 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (((𝐺‘ 1 )(
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) = ( 1 (
·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)) ↔ (𝐺‘ 1 ) = 1 )) |
55 | 39, 54 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑈) ∧ 𝑥 ≠ (0g‘𝑈)) → (𝐺‘ 1 ) = 1 ) |
56 | 55 | rexlimdv3a 3214 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ (Base‘𝑈)𝑥 ≠ (0g‘𝑈) → (𝐺‘ 1 ) = 1 )) |
57 | 6, 56 | mpd 15 |
1
⊢ (𝜑 → (𝐺‘ 1 ) = 1 ) |