Step | Hyp | Ref
| Expression |
1 | | hgmapval1.h |
. . 3
β’ π» = (LHypβπΎ) |
2 | | hgmapval1.u |
. . 3
β’ π = ((DVecHβπΎ)βπ) |
3 | | eqid 2731 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
4 | | eqid 2731 |
. . 3
β’
(0gβπ) = (0gβπ) |
5 | | hgmapval1.k |
. . 3
β’ (π β (πΎ β HL β§ π β π»)) |
6 | 1, 2, 3, 4, 5 | dvh1dim 40617 |
. 2
β’ (π β βπ₯ β (Baseβπ)π₯ β (0gβπ)) |
7 | | hgmapval1.r |
. . . . . . . . 9
β’ π
= (Scalarβπ) |
8 | | hgmapval1.i |
. . . . . . . . 9
β’ 1 =
(1rβπ
) |
9 | | eqid 2731 |
. . . . . . . . 9
β’
((LCDualβπΎ)βπ) = ((LCDualβπΎ)βπ) |
10 | | eqid 2731 |
. . . . . . . . 9
β’
(Scalarβ((LCDualβπΎ)βπ)) = (Scalarβ((LCDualβπΎ)βπ)) |
11 | | eqid 2731 |
. . . . . . . . 9
β’
(1rβ(Scalarβ((LCDualβπΎ)βπ))) =
(1rβ(Scalarβ((LCDualβπΎ)βπ))) |
12 | 1, 2, 7, 8, 9, 10,
11, 5 | lcd1 40784 |
. . . . . . . 8
β’ (π β
(1rβ(Scalarβ((LCDualβπΎ)βπ))) = 1 ) |
13 | 12 | oveq1d 7427 |
. . . . . . 7
β’ (π β
((1rβ(Scalarβ((LCDualβπΎ)βπ)))( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = ( 1 (
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯))) |
14 | 13 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β
((1rβ(Scalarβ((LCDualβπΎ)βπ)))( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = ( 1 (
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯))) |
15 | 1, 9, 5 | lcdlmod 40767 |
. . . . . . . 8
β’ (π β ((LCDualβπΎ)βπ) β LMod) |
16 | 15 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ((LCDualβπΎ)βπ) β LMod) |
17 | | eqid 2731 |
. . . . . . . 8
β’
(Baseβ((LCDualβπΎ)βπ)) = (Baseβ((LCDualβπΎ)βπ)) |
18 | | eqid 2731 |
. . . . . . . 8
β’
((HDMapβπΎ)βπ) = ((HDMapβπΎ)βπ) |
19 | 5 | 3ad2ant1 1132 |
. . . . . . . 8
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (πΎ β HL β§ π β π»)) |
20 | | simp2 1136 |
. . . . . . . 8
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β π₯ β (Baseβπ)) |
21 | 1, 2, 3, 9, 17, 18, 19, 20 | hdmapcl 41005 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (((HDMapβπΎ)βπ)βπ₯) β (Baseβ((LCDualβπΎ)βπ))) |
22 | | eqid 2731 |
. . . . . . . 8
β’ (
Β·π β((LCDualβπΎ)βπ)) = ( Β·π
β((LCDualβπΎ)βπ)) |
23 | 17, 10, 22, 11 | lmodvs1 20645 |
. . . . . . 7
β’
((((LCDualβπΎ)βπ) β LMod β§ (((HDMapβπΎ)βπ)βπ₯) β (Baseβ((LCDualβπΎ)βπ))) β
((1rβ(Scalarβ((LCDualβπΎ)βπ)))( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = (((HDMapβπΎ)βπ)βπ₯)) |
24 | 16, 21, 23 | syl2anc 583 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β
((1rβ(Scalarβ((LCDualβπΎ)βπ)))( Β·π
β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = (((HDMapβπΎ)βπ)βπ₯)) |
25 | 14, 24 | eqtr3d 2773 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ( 1 (
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = (((HDMapβπΎ)βπ)βπ₯)) |
26 | 1, 2, 5 | dvhlmod 40285 |
. . . . . . . 8
β’ (π β π β LMod) |
27 | 26 | 3ad2ant1 1132 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β π β LMod) |
28 | | eqid 2731 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
29 | 3, 7, 28, 8 | lmodvs1 20645 |
. . . . . . 7
β’ ((π β LMod β§ π₯ β (Baseβπ)) β ( 1 (
Β·π βπ)π₯) = π₯) |
30 | 27, 20, 29 | syl2anc 583 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ( 1 (
Β·π βπ)π₯) = π₯) |
31 | 30 | fveq2d 6895 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (((HDMapβπΎ)βπ)β( 1 (
Β·π βπ)π₯)) = (((HDMapβπΎ)βπ)βπ₯)) |
32 | | eqid 2731 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
33 | | hgmapval1.g |
. . . . . 6
β’ πΊ = ((HGMapβπΎ)βπ) |
34 | 7 | lmodring 20623 |
. . . . . . . 8
β’ (π β LMod β π
β Ring) |
35 | 32, 8 | ringidcl 20155 |
. . . . . . . 8
β’ (π
β Ring β 1 β
(Baseβπ
)) |
36 | 26, 34, 35 | 3syl 18 |
. . . . . . 7
β’ (π β 1 β (Baseβπ
)) |
37 | 36 | 3ad2ant1 1132 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β 1 β (Baseβπ
)) |
38 | 1, 2, 3, 28, 7, 32, 9, 22, 18, 33, 19, 20, 37 | hgmapvs 41066 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (((HDMapβπΎ)βπ)β( 1 (
Β·π βπ)π₯)) = ((πΊβ 1 )(
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯))) |
39 | 25, 31, 38 | 3eqtr2rd 2778 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ((πΊβ 1 )(
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = ( 1 (
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯))) |
40 | | eqid 2731 |
. . . . 5
β’
(Baseβ(Scalarβ((LCDualβπΎ)βπ))) =
(Baseβ(Scalarβ((LCDualβπΎ)βπ))) |
41 | | eqid 2731 |
. . . . 5
β’
(0gβ((LCDualβπΎ)βπ)) =
(0gβ((LCDualβπΎ)βπ)) |
42 | 1, 9, 5 | lcdlvec 40766 |
. . . . . 6
β’ (π β ((LCDualβπΎ)βπ) β LVec) |
43 | 42 | 3ad2ant1 1132 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ((LCDualβπΎ)βπ) β LVec) |
44 | 1, 2, 7, 32, 33, 5, 36 | hgmapcl 41064 |
. . . . . . 7
β’ (π β (πΊβ 1 ) β (Baseβπ
)) |
45 | 1, 2, 7, 32, 9, 10, 40, 5 | lcdsbase 40775 |
. . . . . . 7
β’ (π β
(Baseβ(Scalarβ((LCDualβπΎ)βπ))) = (Baseβπ
)) |
46 | 44, 45 | eleqtrrd 2835 |
. . . . . 6
β’ (π β (πΊβ 1 ) β
(Baseβ(Scalarβ((LCDualβπΎ)βπ)))) |
47 | 46 | 3ad2ant1 1132 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (πΊβ 1 ) β
(Baseβ(Scalarβ((LCDualβπΎ)βπ)))) |
48 | 36, 45 | eleqtrrd 2835 |
. . . . . 6
β’ (π β 1 β
(Baseβ(Scalarβ((LCDualβπΎ)βπ)))) |
49 | 48 | 3ad2ant1 1132 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β 1 β
(Baseβ(Scalarβ((LCDualβπΎ)βπ)))) |
50 | | simp3 1137 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β π₯ β (0gβπ)) |
51 | 1, 2, 3, 4, 9, 41,
18, 19, 20 | hdmapeq0 41019 |
. . . . . . 7
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ((((HDMapβπΎ)βπ)βπ₯) = (0gβ((LCDualβπΎ)βπ)) β π₯ = (0gβπ))) |
52 | 51 | necon3bid 2984 |
. . . . . 6
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β ((((HDMapβπΎ)βπ)βπ₯) β
(0gβ((LCDualβπΎ)βπ)) β π₯ β (0gβπ))) |
53 | 50, 52 | mpbird 257 |
. . . . 5
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (((HDMapβπΎ)βπ)βπ₯) β
(0gβ((LCDualβπΎ)βπ))) |
54 | 17, 22, 10, 40, 41, 43, 47, 49, 21, 53 | lvecvscan2 20871 |
. . . 4
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (((πΊβ 1 )(
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) = ( 1 (
Β·π β((LCDualβπΎ)βπ))(((HDMapβπΎ)βπ)βπ₯)) β (πΊβ 1 ) = 1 )) |
55 | 39, 54 | mpbid 231 |
. . 3
β’ ((π β§ π₯ β (Baseβπ) β§ π₯ β (0gβπ)) β (πΊβ 1 ) = 1 ) |
56 | 55 | rexlimdv3a 3158 |
. 2
β’ (π β (βπ₯ β (Baseβπ)π₯ β (0gβπ) β (πΊβ 1 ) = 1 )) |
57 | 6, 56 | mpd 15 |
1
β’ (π β (πΊβ 1 ) = 1 ) |