Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem5 Structured version   Visualization version   GIF version

Theorem hdmapglem5 41941
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem5.h 𝐻 = (LHyp‘𝐾)
hdmapglem5.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem5.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem5.v 𝑉 = (Base‘𝑈)
hdmapglem5.p + = (+g𝑈)
hdmapglem5.m = (-g𝑈)
hdmapglem5.q · = ( ·𝑠𝑈)
hdmapglem5.r 𝑅 = (Scalar‘𝑈)
hdmapglem5.b 𝐵 = (Base‘𝑅)
hdmapglem5.t × = (.r𝑅)
hdmapglem5.z 0 = (0g𝑅)
hdmapglem5.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem5.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem5.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapglem5.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapglem5.i (𝜑𝐼𝐵)
hdmapglem5.j (𝜑𝐽𝐵)
Assertion
Ref Expression
hdmapglem5 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapglem5
StepHypRef Expression
1 hdmapglem5.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmapglem5.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41129 . . . 4 (𝜑𝑈 ∈ LMod)
5 hdmapglem5.r . . . . 5 𝑅 = (Scalar‘𝑈)
65lmodring 20825 . . . 4 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
74, 6syl 17 . . 3 (𝜑𝑅 ∈ Ring)
8 hdmapglem5.b . . . 4 𝐵 = (Base‘𝑅)
9 hdmapglem5.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
10 hdmapglem5.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmapglem5.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
12 eqid 2735 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2735 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2735 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
15 hdmapglem5.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
161, 12, 13, 2, 10, 14, 15, 3dvheveccl 41131 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1716eldifad 3938 . . . . . . . 8 (𝜑𝐸𝑉)
1817snssd 4785 . . . . . . 7 (𝜑 → {𝐸} ⊆ 𝑉)
19 hdmapglem5.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
201, 2, 10, 19dochssv 41374 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
213, 18, 20syl2anc 584 . . . . . 6 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
22 hdmapglem5.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
2321, 22sseldd 3959 . . . . 5 (𝜑𝐶𝑉)
24 hdmapglem5.d . . . . . 6 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2521, 24sseldd 3959 . . . . 5 (𝜑𝐷𝑉)
261, 2, 10, 5, 8, 11, 3, 23, 25hdmapipcl 41924 . . . 4 (𝜑 → ((𝑆𝐷)‘𝐶) ∈ 𝐵)
271, 2, 5, 8, 9, 3, 26hgmapcl 41908 . . 3 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵)
28 hdmapglem5.t . . . 4 × = (.r𝑅)
29 eqid 2735 . . . 4 (1r𝑅) = (1r𝑅)
308, 28, 29ringlidm 20229 . . 3 ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵) → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
317, 27, 30syl2anc 584 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
32 hdmapglem5.p . . 3 + = (+g𝑈)
33 hdmapglem5.m . . 3 = (-g𝑈)
34 hdmapglem5.q . . 3 · = ( ·𝑠𝑈)
35 hdmapglem5.z . . 3 0 = (0g𝑅)
368, 29ringidcl 20225 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
377, 36syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
381, 2, 5, 29, 9, 3hgmapval1 41912 . . . . 5 (𝜑 → (𝐺‘(1r𝑅)) = (1r𝑅))
3938oveq2d 7421 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = (((𝑆𝐷)‘𝐶) × (1r𝑅)))
408, 28, 29ringridm 20230 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑆𝐷)‘𝐶) ∈ 𝐵) → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
417, 26, 40syl2anc 584 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
4239, 41eqtrd 2770 . . 3 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = ((𝑆𝐷)‘𝐶))
431, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42hdmapinvlem4 41940 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = ((𝑆𝐶)‘𝐷))
4431, 43eqtr3d 2772 1 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3926  {csn 4601  cop 4607   I cid 5547  cres 5656  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  -gcsg 18918  1rcur 20141  Ringcrg 20193  LModclmod 20817  HLchlt 39368  LHypclh 40003  LTrncltrn 40120  DVecHcdvh 41097  ocHcoch 41366  HDMapchdma 41811  HGMapchg 41902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-riotaBAD 38971
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-undef 8272  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-0g 17455  df-mre 17598  df-mrc 17599  df-acs 17601  df-proset 18306  df-poset 18325  df-plt 18340  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-p0 18435  df-p1 18436  df-lat 18442  df-clat 18509  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-oppg 19329  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-rlreg 20654  df-domn 20655  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061  df-lsatoms 38994  df-lshyp 38995  df-lcv 39037  df-lfl 39076  df-lkr 39104  df-ldual 39142  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39517  df-lplanes 39518  df-lvols 39519  df-lines 39520  df-psubsp 39522  df-pmap 39523  df-padd 39815  df-lhyp 40007  df-laut 40008  df-ldil 40123  df-ltrn 40124  df-trl 40178  df-tgrp 40762  df-tendo 40774  df-edring 40776  df-dveca 41022  df-disoa 41048  df-dvech 41098  df-dib 41158  df-dic 41192  df-dih 41248  df-doch 41367  df-djh 41414  df-lcdual 41606  df-mapd 41644  df-hvmap 41776  df-hdmap1 41812  df-hdmap 41813  df-hgmap 41903
This theorem is referenced by:  hgmapvvlem1  41942  hdmapglem7  41948
  Copyright terms: Public domain W3C validator