Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem5 | Structured version Visualization version GIF version |
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem5.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem5.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem5.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem5.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem5.p | ⊢ + = (+g‘𝑈) |
hdmapglem5.m | ⊢ − = (-g‘𝑈) |
hdmapglem5.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem5.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem5.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem5.t | ⊢ × = (.r‘𝑅) |
hdmapglem5.z | ⊢ 0 = (0g‘𝑅) |
hdmapglem5.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmapglem5.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hdmapglem5.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem5.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
hdmapglem5.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
hdmapglem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
hdmapglem5.j | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
Ref | Expression |
---|---|
hdmapglem5 | ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem5.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmapglem5.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmapglem5.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlmod 39051 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
5 | hdmapglem5.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | 5 | lmodring 20046 | . . . 4 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
8 | hdmapglem5.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
9 | hdmapglem5.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
10 | hdmapglem5.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
11 | hdmapglem5.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
12 | eqid 2738 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
13 | eqid 2738 | . . . . . . . . . 10 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
14 | eqid 2738 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
15 | hdmapglem5.e | . . . . . . . . . 10 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
16 | 1, 12, 13, 2, 10, 14, 15, 3 | dvheveccl 39053 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
17 | 16 | eldifad 3895 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
18 | 17 | snssd 4739 | . . . . . . 7 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
19 | hdmapglem5.o | . . . . . . . 8 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
20 | 1, 2, 10, 19 | dochssv 39296 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
21 | 3, 18, 20 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
22 | hdmapglem5.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
23 | 21, 22 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
24 | hdmapglem5.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
25 | 21, 24 | sseldd 3918 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
26 | 1, 2, 10, 5, 8, 11, 3, 23, 25 | hdmapipcl 39846 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) |
27 | 1, 2, 5, 8, 9, 3, 26 | hgmapcl 39830 | . . 3 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) |
28 | hdmapglem5.t | . . . 4 ⊢ × = (.r‘𝑅) | |
29 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
30 | 8, 28, 29 | ringlidm 19725 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
31 | 7, 27, 30 | syl2anc 583 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
32 | hdmapglem5.p | . . 3 ⊢ + = (+g‘𝑈) | |
33 | hdmapglem5.m | . . 3 ⊢ − = (-g‘𝑈) | |
34 | hdmapglem5.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
35 | hdmapglem5.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
36 | 8, 29 | ringidcl 19722 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
37 | 7, 36 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
38 | 1, 2, 5, 29, 9, 3 | hgmapval1 39834 | . . . . 5 ⊢ (𝜑 → (𝐺‘(1r‘𝑅)) = (1r‘𝑅)) |
39 | 38 | oveq2d 7271 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅))) |
40 | 8, 28, 29 | ringridm 19726 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
41 | 7, 26, 40 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
42 | 39, 41 | eqtrd 2778 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = ((𝑆‘𝐷)‘𝐶)) |
43 | 1, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42 | hdmapinvlem4 39862 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = ((𝑆‘𝐶)‘𝐷)) |
44 | 31, 43 | eqtr3d 2780 | 1 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 〈cop 4564 I cid 5479 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 -gcsg 18494 1rcur 19652 Ringcrg 19698 LModclmod 20038 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 DVecHcdvh 39019 ocHcoch 39288 HDMapchdma 39733 HGMapchg 39824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hvmap 39698 df-hdmap1 39734 df-hdmap 39735 df-hgmap 39825 |
This theorem is referenced by: hgmapvvlem1 39864 hdmapglem7 39870 |
Copyright terms: Public domain | W3C validator |