![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem5 | Structured version Visualization version GIF version |
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem5.h | β’ π» = (LHypβπΎ) |
hdmapglem5.e | β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© |
hdmapglem5.o | β’ π = ((ocHβπΎ)βπ) |
hdmapglem5.u | β’ π = ((DVecHβπΎ)βπ) |
hdmapglem5.v | β’ π = (Baseβπ) |
hdmapglem5.p | β’ + = (+gβπ) |
hdmapglem5.m | β’ β = (-gβπ) |
hdmapglem5.q | β’ Β· = ( Β·π βπ) |
hdmapglem5.r | β’ π = (Scalarβπ) |
hdmapglem5.b | β’ π΅ = (Baseβπ ) |
hdmapglem5.t | β’ Γ = (.rβπ ) |
hdmapglem5.z | β’ 0 = (0gβπ ) |
hdmapglem5.s | β’ π = ((HDMapβπΎ)βπ) |
hdmapglem5.g | β’ πΊ = ((HGMapβπΎ)βπ) |
hdmapglem5.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmapglem5.c | β’ (π β πΆ β (πβ{πΈ})) |
hdmapglem5.d | β’ (π β π· β (πβ{πΈ})) |
hdmapglem5.i | β’ (π β πΌ β π΅) |
hdmapglem5.j | β’ (π β π½ β π΅) |
Ref | Expression |
---|---|
hdmapglem5 | β’ (π β (πΊβ((πβπ·)βπΆ)) = ((πβπΆ)βπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem5.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | hdmapglem5.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmapglem5.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | dvhlmod 39969 | . . . 4 β’ (π β π β LMod) |
5 | hdmapglem5.r | . . . . 5 β’ π = (Scalarβπ) | |
6 | 5 | lmodring 20471 | . . . 4 β’ (π β LMod β π β Ring) |
7 | 4, 6 | syl 17 | . . 3 β’ (π β π β Ring) |
8 | hdmapglem5.b | . . . 4 β’ π΅ = (Baseβπ ) | |
9 | hdmapglem5.g | . . . 4 β’ πΊ = ((HGMapβπΎ)βπ) | |
10 | hdmapglem5.v | . . . . 5 β’ π = (Baseβπ) | |
11 | hdmapglem5.s | . . . . 5 β’ π = ((HDMapβπΎ)βπ) | |
12 | eqid 2732 | . . . . . . . . . 10 β’ (BaseβπΎ) = (BaseβπΎ) | |
13 | eqid 2732 | . . . . . . . . . 10 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
14 | eqid 2732 | . . . . . . . . . 10 β’ (0gβπ) = (0gβπ) | |
15 | hdmapglem5.e | . . . . . . . . . 10 β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© | |
16 | 1, 12, 13, 2, 10, 14, 15, 3 | dvheveccl 39971 | . . . . . . . . 9 β’ (π β πΈ β (π β {(0gβπ)})) |
17 | 16 | eldifad 3959 | . . . . . . . 8 β’ (π β πΈ β π) |
18 | 17 | snssd 4811 | . . . . . . 7 β’ (π β {πΈ} β π) |
19 | hdmapglem5.o | . . . . . . . 8 β’ π = ((ocHβπΎ)βπ) | |
20 | 1, 2, 10, 19 | dochssv 40214 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β π) |
21 | 3, 18, 20 | syl2anc 584 | . . . . . 6 β’ (π β (πβ{πΈ}) β π) |
22 | hdmapglem5.c | . . . . . 6 β’ (π β πΆ β (πβ{πΈ})) | |
23 | 21, 22 | sseldd 3982 | . . . . 5 β’ (π β πΆ β π) |
24 | hdmapglem5.d | . . . . . 6 β’ (π β π· β (πβ{πΈ})) | |
25 | 21, 24 | sseldd 3982 | . . . . 5 β’ (π β π· β π) |
26 | 1, 2, 10, 5, 8, 11, 3, 23, 25 | hdmapipcl 40764 | . . . 4 β’ (π β ((πβπ·)βπΆ) β π΅) |
27 | 1, 2, 5, 8, 9, 3, 26 | hgmapcl 40748 | . . 3 β’ (π β (πΊβ((πβπ·)βπΆ)) β π΅) |
28 | hdmapglem5.t | . . . 4 β’ Γ = (.rβπ ) | |
29 | eqid 2732 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
30 | 8, 28, 29 | ringlidm 20079 | . . 3 β’ ((π β Ring β§ (πΊβ((πβπ·)βπΆ)) β π΅) β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = (πΊβ((πβπ·)βπΆ))) |
31 | 7, 27, 30 | syl2anc 584 | . 2 β’ (π β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = (πΊβ((πβπ·)βπΆ))) |
32 | hdmapglem5.p | . . 3 β’ + = (+gβπ) | |
33 | hdmapglem5.m | . . 3 β’ β = (-gβπ) | |
34 | hdmapglem5.q | . . 3 β’ Β· = ( Β·π βπ) | |
35 | hdmapglem5.z | . . 3 β’ 0 = (0gβπ ) | |
36 | 8, 29 | ringidcl 20076 | . . . 4 β’ (π β Ring β (1rβπ ) β π΅) |
37 | 7, 36 | syl 17 | . . 3 β’ (π β (1rβπ ) β π΅) |
38 | 1, 2, 5, 29, 9, 3 | hgmapval1 40752 | . . . . 5 β’ (π β (πΊβ(1rβπ )) = (1rβπ )) |
39 | 38 | oveq2d 7421 | . . . 4 β’ (π β (((πβπ·)βπΆ) Γ (πΊβ(1rβπ ))) = (((πβπ·)βπΆ) Γ (1rβπ ))) |
40 | 8, 28, 29 | ringridm 20080 | . . . . 5 β’ ((π β Ring β§ ((πβπ·)βπΆ) β π΅) β (((πβπ·)βπΆ) Γ (1rβπ )) = ((πβπ·)βπΆ)) |
41 | 7, 26, 40 | syl2anc 584 | . . . 4 β’ (π β (((πβπ·)βπΆ) Γ (1rβπ )) = ((πβπ·)βπΆ)) |
42 | 39, 41 | eqtrd 2772 | . . 3 β’ (π β (((πβπ·)βπΆ) Γ (πΊβ(1rβπ ))) = ((πβπ·)βπΆ)) |
43 | 1, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42 | hdmapinvlem4 40780 | . 2 β’ (π β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = ((πβπΆ)βπ·)) |
44 | 31, 43 | eqtr3d 2774 | 1 β’ (π β (πΊβ((πβπ·)βπΆ)) = ((πβπΆ)βπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3947 {csn 4627 β¨cop 4633 I cid 5572 βΎ cres 5677 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 -gcsg 18817 1rcur 19998 Ringcrg 20049 LModclmod 20463 HLchlt 38208 LHypclh 38843 LTrncltrn 38960 DVecHcdvh 39937 ocHcoch 40206 HDMapchdma 40651 HGMapchg 40742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-riotaBAD 37811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mre 17526 df-mrc 17527 df-acs 17529 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-p1 18375 df-lat 18381 df-clat 18448 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-subg 18997 df-cntz 19175 df-oppg 19204 df-lsm 19498 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-drng 20309 df-lmod 20465 df-lss 20535 df-lsp 20575 df-lvec 20706 df-lsatoms 37834 df-lshyp 37835 df-lcv 37877 df-lfl 37916 df-lkr 37944 df-ldual 37982 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 df-lplanes 38358 df-lvols 38359 df-lines 38360 df-psubsp 38362 df-pmap 38363 df-padd 38655 df-lhyp 38847 df-laut 38848 df-ldil 38963 df-ltrn 38964 df-trl 39018 df-tgrp 39602 df-tendo 39614 df-edring 39616 df-dveca 39862 df-disoa 39888 df-dvech 39938 df-dib 39998 df-dic 40032 df-dih 40088 df-doch 40207 df-djh 40254 df-lcdual 40446 df-mapd 40484 df-hvmap 40616 df-hdmap1 40652 df-hdmap 40653 df-hgmap 40743 |
This theorem is referenced by: hgmapvvlem1 40782 hdmapglem7 40788 |
Copyright terms: Public domain | W3C validator |