| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem5 | Structured version Visualization version GIF version | ||
| Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmapglem5.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmapglem5.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
| hdmapglem5.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
| hdmapglem5.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmapglem5.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmapglem5.p | ⊢ + = (+g‘𝑈) |
| hdmapglem5.m | ⊢ − = (-g‘𝑈) |
| hdmapglem5.q | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmapglem5.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmapglem5.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmapglem5.t | ⊢ × = (.r‘𝑅) |
| hdmapglem5.z | ⊢ 0 = (0g‘𝑅) |
| hdmapglem5.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmapglem5.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hdmapglem5.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmapglem5.c | ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) |
| hdmapglem5.d | ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) |
| hdmapglem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
| hdmapglem5.j | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hdmapglem5 | ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmapglem5.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmapglem5.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmapglem5.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | dvhlmod 41282 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 5 | hdmapglem5.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | 5 | lmodring 20810 | . . . 4 ⊢ (𝑈 ∈ LMod → 𝑅 ∈ Ring) |
| 7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | hdmapglem5.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 9 | hdmapglem5.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 10 | hdmapglem5.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
| 11 | hdmapglem5.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 12 | eqid 2733 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 13 | eqid 2733 | . . . . . . . . . 10 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 14 | eqid 2733 | . . . . . . . . . 10 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
| 15 | hdmapglem5.e | . . . . . . . . . 10 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
| 16 | 1, 12, 13, 2, 10, 14, 15, 3 | dvheveccl 41284 | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
| 17 | 16 | eldifad 3910 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
| 18 | 17 | snssd 4762 | . . . . . . 7 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
| 19 | hdmapglem5.o | . . . . . . . 8 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
| 20 | 1, 2, 10, 19 | dochssv 41527 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 21 | 3, 18, 20 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉) |
| 22 | hdmapglem5.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) | |
| 23 | 21, 22 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 24 | hdmapglem5.d | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) | |
| 25 | 21, 24 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| 26 | 1, 2, 10, 5, 8, 11, 3, 23, 25 | hdmapipcl 42077 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) |
| 27 | 1, 2, 5, 8, 9, 3, 26 | hgmapcl 42061 | . . 3 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) |
| 28 | hdmapglem5.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 29 | eqid 2733 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 30 | 8, 28, 29 | ringlidm 20195 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆‘𝐷)‘𝐶)) ∈ 𝐵) → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
| 31 | 7, 27, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = (𝐺‘((𝑆‘𝐷)‘𝐶))) |
| 32 | hdmapglem5.p | . . 3 ⊢ + = (+g‘𝑈) | |
| 33 | hdmapglem5.m | . . 3 ⊢ − = (-g‘𝑈) | |
| 34 | hdmapglem5.q | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 35 | hdmapglem5.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 36 | 8, 29 | ringidcl 20191 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) |
| 37 | 7, 36 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑅) ∈ 𝐵) |
| 38 | 1, 2, 5, 29, 9, 3 | hgmapval1 42065 | . . . . 5 ⊢ (𝜑 → (𝐺‘(1r‘𝑅)) = (1r‘𝑅)) |
| 39 | 38 | oveq2d 7371 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅))) |
| 40 | 8, 28, 29 | ringridm 20196 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ ((𝑆‘𝐷)‘𝐶) ∈ 𝐵) → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
| 41 | 7, 26, 40 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (1r‘𝑅)) = ((𝑆‘𝐷)‘𝐶)) |
| 42 | 39, 41 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (((𝑆‘𝐷)‘𝐶) × (𝐺‘(1r‘𝑅))) = ((𝑆‘𝐷)‘𝐶)) |
| 43 | 1, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42 | hdmapinvlem4 42093 | . 2 ⊢ (𝜑 → ((1r‘𝑅) × (𝐺‘((𝑆‘𝐷)‘𝐶))) = ((𝑆‘𝐶)‘𝐷)) |
| 44 | 31, 43 | eqtr3d 2770 | 1 ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 〈cop 4583 I cid 5515 ↾ cres 5623 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 .rcmulr 17169 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 -gcsg 18856 1rcur 20107 Ringcrg 20159 LModclmod 20802 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 DVecHcdvh 41250 ocHcoch 41519 HDMapchdma 41964 HGMapchg 42055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-0g 17352 df-mre 17496 df-mrc 17497 df-acs 17499 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cntz 19237 df-oppg 19266 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-nzr 20437 df-rlreg 20618 df-domn 20619 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-lsatoms 39148 df-lshyp 39149 df-lcv 39191 df-lfl 39230 df-lkr 39258 df-ldual 39296 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tgrp 40915 df-tendo 40927 df-edring 40929 df-dveca 41175 df-disoa 41201 df-dvech 41251 df-dib 41311 df-dic 41345 df-dih 41401 df-doch 41520 df-djh 41567 df-lcdual 41759 df-mapd 41797 df-hvmap 41929 df-hdmap1 41965 df-hdmap 41966 df-hgmap 42056 |
| This theorem is referenced by: hgmapvvlem1 42095 hdmapglem7 42101 |
| Copyright terms: Public domain | W3C validator |