Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem5 Structured version   Visualization version   GIF version

Theorem hdmapglem5 41923
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem5.h 𝐻 = (LHyp‘𝐾)
hdmapglem5.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem5.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem5.v 𝑉 = (Base‘𝑈)
hdmapglem5.p + = (+g𝑈)
hdmapglem5.m = (-g𝑈)
hdmapglem5.q · = ( ·𝑠𝑈)
hdmapglem5.r 𝑅 = (Scalar‘𝑈)
hdmapglem5.b 𝐵 = (Base‘𝑅)
hdmapglem5.t × = (.r𝑅)
hdmapglem5.z 0 = (0g𝑅)
hdmapglem5.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem5.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem5.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapglem5.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapglem5.i (𝜑𝐼𝐵)
hdmapglem5.j (𝜑𝐽𝐵)
Assertion
Ref Expression
hdmapglem5 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapglem5
StepHypRef Expression
1 hdmapglem5.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmapglem5.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41111 . . . 4 (𝜑𝑈 ∈ LMod)
5 hdmapglem5.r . . . . 5 𝑅 = (Scalar‘𝑈)
65lmodring 20781 . . . 4 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
74, 6syl 17 . . 3 (𝜑𝑅 ∈ Ring)
8 hdmapglem5.b . . . 4 𝐵 = (Base‘𝑅)
9 hdmapglem5.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
10 hdmapglem5.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmapglem5.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
12 eqid 2730 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2730 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2730 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
15 hdmapglem5.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
161, 12, 13, 2, 10, 14, 15, 3dvheveccl 41113 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1716eldifad 3929 . . . . . . . 8 (𝜑𝐸𝑉)
1817snssd 4776 . . . . . . 7 (𝜑 → {𝐸} ⊆ 𝑉)
19 hdmapglem5.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
201, 2, 10, 19dochssv 41356 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
213, 18, 20syl2anc 584 . . . . . 6 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
22 hdmapglem5.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
2321, 22sseldd 3950 . . . . 5 (𝜑𝐶𝑉)
24 hdmapglem5.d . . . . . 6 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2521, 24sseldd 3950 . . . . 5 (𝜑𝐷𝑉)
261, 2, 10, 5, 8, 11, 3, 23, 25hdmapipcl 41906 . . . 4 (𝜑 → ((𝑆𝐷)‘𝐶) ∈ 𝐵)
271, 2, 5, 8, 9, 3, 26hgmapcl 41890 . . 3 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵)
28 hdmapglem5.t . . . 4 × = (.r𝑅)
29 eqid 2730 . . . 4 (1r𝑅) = (1r𝑅)
308, 28, 29ringlidm 20185 . . 3 ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵) → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
317, 27, 30syl2anc 584 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
32 hdmapglem5.p . . 3 + = (+g𝑈)
33 hdmapglem5.m . . 3 = (-g𝑈)
34 hdmapglem5.q . . 3 · = ( ·𝑠𝑈)
35 hdmapglem5.z . . 3 0 = (0g𝑅)
368, 29ringidcl 20181 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
377, 36syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
381, 2, 5, 29, 9, 3hgmapval1 41894 . . . . 5 (𝜑 → (𝐺‘(1r𝑅)) = (1r𝑅))
3938oveq2d 7406 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = (((𝑆𝐷)‘𝐶) × (1r𝑅)))
408, 28, 29ringridm 20186 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑆𝐷)‘𝐶) ∈ 𝐵) → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
417, 26, 40syl2anc 584 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
4239, 41eqtrd 2765 . . 3 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = ((𝑆𝐷)‘𝐶))
431, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42hdmapinvlem4 41922 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = ((𝑆𝐶)‘𝐷))
4431, 43eqtr3d 2767 1 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  {csn 4592  cop 4598   I cid 5535  cres 5643  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  -gcsg 18874  1rcur 20097  Ringcrg 20149  LModclmod 20773  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  DVecHcdvh 41079  ocHcoch 41348  HDMapchdma 41793  HGMapchg 41884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-oppg 19285  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lsatoms 38976  df-lshyp 38977  df-lcv 39019  df-lfl 39058  df-lkr 39086  df-ldual 39124  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tgrp 40744  df-tendo 40756  df-edring 40758  df-dveca 41004  df-disoa 41030  df-dvech 41080  df-dib 41140  df-dic 41174  df-dih 41230  df-doch 41349  df-djh 41396  df-lcdual 41588  df-mapd 41626  df-hvmap 41758  df-hdmap1 41794  df-hdmap 41795  df-hgmap 41885
This theorem is referenced by:  hgmapvvlem1  41924  hdmapglem7  41930
  Copyright terms: Public domain W3C validator