Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem5 Structured version   Visualization version   GIF version

Theorem hdmapglem5 41904
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem5.h 𝐻 = (LHyp‘𝐾)
hdmapglem5.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem5.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem5.v 𝑉 = (Base‘𝑈)
hdmapglem5.p + = (+g𝑈)
hdmapglem5.m = (-g𝑈)
hdmapglem5.q · = ( ·𝑠𝑈)
hdmapglem5.r 𝑅 = (Scalar‘𝑈)
hdmapglem5.b 𝐵 = (Base‘𝑅)
hdmapglem5.t × = (.r𝑅)
hdmapglem5.z 0 = (0g𝑅)
hdmapglem5.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem5.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem5.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapglem5.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapglem5.i (𝜑𝐼𝐵)
hdmapglem5.j (𝜑𝐽𝐵)
Assertion
Ref Expression
hdmapglem5 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapglem5
StepHypRef Expression
1 hdmapglem5.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmapglem5.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41092 . . . 4 (𝜑𝑈 ∈ LMod)
5 hdmapglem5.r . . . . 5 𝑅 = (Scalar‘𝑈)
65lmodring 20789 . . . 4 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
74, 6syl 17 . . 3 (𝜑𝑅 ∈ Ring)
8 hdmapglem5.b . . . 4 𝐵 = (Base‘𝑅)
9 hdmapglem5.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
10 hdmapglem5.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmapglem5.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
12 eqid 2729 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2729 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2729 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
15 hdmapglem5.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
161, 12, 13, 2, 10, 14, 15, 3dvheveccl 41094 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1716eldifad 3917 . . . . . . . 8 (𝜑𝐸𝑉)
1817snssd 4763 . . . . . . 7 (𝜑 → {𝐸} ⊆ 𝑉)
19 hdmapglem5.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
201, 2, 10, 19dochssv 41337 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
213, 18, 20syl2anc 584 . . . . . 6 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
22 hdmapglem5.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
2321, 22sseldd 3938 . . . . 5 (𝜑𝐶𝑉)
24 hdmapglem5.d . . . . . 6 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2521, 24sseldd 3938 . . . . 5 (𝜑𝐷𝑉)
261, 2, 10, 5, 8, 11, 3, 23, 25hdmapipcl 41887 . . . 4 (𝜑 → ((𝑆𝐷)‘𝐶) ∈ 𝐵)
271, 2, 5, 8, 9, 3, 26hgmapcl 41871 . . 3 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵)
28 hdmapglem5.t . . . 4 × = (.r𝑅)
29 eqid 2729 . . . 4 (1r𝑅) = (1r𝑅)
308, 28, 29ringlidm 20172 . . 3 ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵) → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
317, 27, 30syl2anc 584 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
32 hdmapglem5.p . . 3 + = (+g𝑈)
33 hdmapglem5.m . . 3 = (-g𝑈)
34 hdmapglem5.q . . 3 · = ( ·𝑠𝑈)
35 hdmapglem5.z . . 3 0 = (0g𝑅)
368, 29ringidcl 20168 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
377, 36syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
381, 2, 5, 29, 9, 3hgmapval1 41875 . . . . 5 (𝜑 → (𝐺‘(1r𝑅)) = (1r𝑅))
3938oveq2d 7369 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = (((𝑆𝐷)‘𝐶) × (1r𝑅)))
408, 28, 29ringridm 20173 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑆𝐷)‘𝐶) ∈ 𝐵) → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
417, 26, 40syl2anc 584 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
4239, 41eqtrd 2764 . . 3 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = ((𝑆𝐷)‘𝐶))
431, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42hdmapinvlem4 41903 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = ((𝑆𝐶)‘𝐷))
4431, 43eqtr3d 2766 1 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3905  {csn 4579  cop 4585   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  -gcsg 18832  1rcur 20084  Ringcrg 20136  LModclmod 20781  HLchlt 39331  LHypclh 39966  LTrncltrn 40083  DVecHcdvh 41060  ocHcoch 41329  HDMapchdma 41774  HGMapchg 41865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38957  df-lshyp 38958  df-lcv 39000  df-lfl 39039  df-lkr 39067  df-ldual 39105  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tgrp 40725  df-tendo 40737  df-edring 40739  df-dveca 40985  df-disoa 41011  df-dvech 41061  df-dib 41121  df-dic 41155  df-dih 41211  df-doch 41330  df-djh 41377  df-lcdual 41569  df-mapd 41607  df-hvmap 41739  df-hdmap1 41775  df-hdmap 41776  df-hgmap 41866
This theorem is referenced by:  hgmapvvlem1  41905  hdmapglem7  41911
  Copyright terms: Public domain W3C validator