![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem5 | Structured version Visualization version GIF version |
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem5.h | β’ π» = (LHypβπΎ) |
hdmapglem5.e | β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© |
hdmapglem5.o | β’ π = ((ocHβπΎ)βπ) |
hdmapglem5.u | β’ π = ((DVecHβπΎ)βπ) |
hdmapglem5.v | β’ π = (Baseβπ) |
hdmapglem5.p | β’ + = (+gβπ) |
hdmapglem5.m | β’ β = (-gβπ) |
hdmapglem5.q | β’ Β· = ( Β·π βπ) |
hdmapglem5.r | β’ π = (Scalarβπ) |
hdmapglem5.b | β’ π΅ = (Baseβπ ) |
hdmapglem5.t | β’ Γ = (.rβπ ) |
hdmapglem5.z | β’ 0 = (0gβπ ) |
hdmapglem5.s | β’ π = ((HDMapβπΎ)βπ) |
hdmapglem5.g | β’ πΊ = ((HGMapβπΎ)βπ) |
hdmapglem5.k | β’ (π β (πΎ β HL β§ π β π»)) |
hdmapglem5.c | β’ (π β πΆ β (πβ{πΈ})) |
hdmapglem5.d | β’ (π β π· β (πβ{πΈ})) |
hdmapglem5.i | β’ (π β πΌ β π΅) |
hdmapglem5.j | β’ (π β π½ β π΅) |
Ref | Expression |
---|---|
hdmapglem5 | β’ (π β (πΊβ((πβπ·)βπΆ)) = ((πβπΆ)βπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem5.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | hdmapglem5.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
3 | hdmapglem5.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | dvhlmod 40638 | . . . 4 β’ (π β π β LMod) |
5 | hdmapglem5.r | . . . . 5 β’ π = (Scalarβπ) | |
6 | 5 | lmodring 20753 | . . . 4 β’ (π β LMod β π β Ring) |
7 | 4, 6 | syl 17 | . . 3 β’ (π β π β Ring) |
8 | hdmapglem5.b | . . . 4 β’ π΅ = (Baseβπ ) | |
9 | hdmapglem5.g | . . . 4 β’ πΊ = ((HGMapβπΎ)βπ) | |
10 | hdmapglem5.v | . . . . 5 β’ π = (Baseβπ) | |
11 | hdmapglem5.s | . . . . 5 β’ π = ((HDMapβπΎ)βπ) | |
12 | eqid 2725 | . . . . . . . . . 10 β’ (BaseβπΎ) = (BaseβπΎ) | |
13 | eqid 2725 | . . . . . . . . . 10 β’ ((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) | |
14 | eqid 2725 | . . . . . . . . . 10 β’ (0gβπ) = (0gβπ) | |
15 | hdmapglem5.e | . . . . . . . . . 10 β’ πΈ = β¨( I βΎ (BaseβπΎ)), ( I βΎ ((LTrnβπΎ)βπ))β© | |
16 | 1, 12, 13, 2, 10, 14, 15, 3 | dvheveccl 40640 | . . . . . . . . 9 β’ (π β πΈ β (π β {(0gβπ)})) |
17 | 16 | eldifad 3952 | . . . . . . . 8 β’ (π β πΈ β π) |
18 | 17 | snssd 4808 | . . . . . . 7 β’ (π β {πΈ} β π) |
19 | hdmapglem5.o | . . . . . . . 8 β’ π = ((ocHβπΎ)βπ) | |
20 | 1, 2, 10, 19 | dochssv 40883 | . . . . . . 7 β’ (((πΎ β HL β§ π β π») β§ {πΈ} β π) β (πβ{πΈ}) β π) |
21 | 3, 18, 20 | syl2anc 582 | . . . . . 6 β’ (π β (πβ{πΈ}) β π) |
22 | hdmapglem5.c | . . . . . 6 β’ (π β πΆ β (πβ{πΈ})) | |
23 | 21, 22 | sseldd 3973 | . . . . 5 β’ (π β πΆ β π) |
24 | hdmapglem5.d | . . . . . 6 β’ (π β π· β (πβ{πΈ})) | |
25 | 21, 24 | sseldd 3973 | . . . . 5 β’ (π β π· β π) |
26 | 1, 2, 10, 5, 8, 11, 3, 23, 25 | hdmapipcl 41433 | . . . 4 β’ (π β ((πβπ·)βπΆ) β π΅) |
27 | 1, 2, 5, 8, 9, 3, 26 | hgmapcl 41417 | . . 3 β’ (π β (πΊβ((πβπ·)βπΆ)) β π΅) |
28 | hdmapglem5.t | . . . 4 β’ Γ = (.rβπ ) | |
29 | eqid 2725 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
30 | 8, 28, 29 | ringlidm 20207 | . . 3 β’ ((π β Ring β§ (πΊβ((πβπ·)βπΆ)) β π΅) β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = (πΊβ((πβπ·)βπΆ))) |
31 | 7, 27, 30 | syl2anc 582 | . 2 β’ (π β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = (πΊβ((πβπ·)βπΆ))) |
32 | hdmapglem5.p | . . 3 β’ + = (+gβπ) | |
33 | hdmapglem5.m | . . 3 β’ β = (-gβπ) | |
34 | hdmapglem5.q | . . 3 β’ Β· = ( Β·π βπ) | |
35 | hdmapglem5.z | . . 3 β’ 0 = (0gβπ ) | |
36 | 8, 29 | ringidcl 20204 | . . . 4 β’ (π β Ring β (1rβπ ) β π΅) |
37 | 7, 36 | syl 17 | . . 3 β’ (π β (1rβπ ) β π΅) |
38 | 1, 2, 5, 29, 9, 3 | hgmapval1 41421 | . . . . 5 β’ (π β (πΊβ(1rβπ )) = (1rβπ )) |
39 | 38 | oveq2d 7431 | . . . 4 β’ (π β (((πβπ·)βπΆ) Γ (πΊβ(1rβπ ))) = (((πβπ·)βπΆ) Γ (1rβπ ))) |
40 | 8, 28, 29 | ringridm 20208 | . . . . 5 β’ ((π β Ring β§ ((πβπ·)βπΆ) β π΅) β (((πβπ·)βπΆ) Γ (1rβπ )) = ((πβπ·)βπΆ)) |
41 | 7, 26, 40 | syl2anc 582 | . . . 4 β’ (π β (((πβπ·)βπΆ) Γ (1rβπ )) = ((πβπ·)βπΆ)) |
42 | 39, 41 | eqtrd 2765 | . . 3 β’ (π β (((πβπ·)βπΆ) Γ (πΊβ(1rβπ ))) = ((πβπ·)βπΆ)) |
43 | 1, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42 | hdmapinvlem4 41449 | . 2 β’ (π β ((1rβπ ) Γ (πΊβ((πβπ·)βπΆ))) = ((πβπΆ)βπ·)) |
44 | 31, 43 | eqtr3d 2767 | 1 β’ (π β (πΊβ((πβπ·)βπΆ)) = ((πβπΆ)βπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3940 {csn 4624 β¨cop 4630 I cid 5569 βΎ cres 5674 βcfv 6542 (class class class)co 7415 Basecbs 17177 +gcplusg 17230 .rcmulr 17231 Scalarcsca 17233 Β·π cvsca 17234 0gc0g 17418 -gcsg 18894 1rcur 20123 Ringcrg 20175 LModclmod 20745 HLchlt 38877 LHypclh 39512 LTrncltrn 39629 DVecHcdvh 40606 ocHcoch 40875 HDMapchdma 41320 HGMapchg 41411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-riotaBAD 38480 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-tpos 8228 df-undef 8275 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12501 df-z 12587 df-uz 12851 df-fz 13515 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-0g 17420 df-mre 17563 df-mrc 17564 df-acs 17566 df-proset 18284 df-poset 18302 df-plt 18319 df-lub 18335 df-glb 18336 df-join 18337 df-meet 18338 df-p0 18414 df-p1 18415 df-lat 18421 df-clat 18488 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-subg 19080 df-cntz 19270 df-oppg 19299 df-lsm 19593 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-oppr 20275 df-dvdsr 20298 df-unit 20299 df-invr 20329 df-dvr 20342 df-drng 20628 df-lmod 20747 df-lss 20818 df-lsp 20858 df-lvec 20990 df-lsatoms 38503 df-lshyp 38504 df-lcv 38546 df-lfl 38585 df-lkr 38613 df-ldual 38651 df-oposet 38703 df-ol 38705 df-oml 38706 df-covers 38793 df-ats 38794 df-atl 38825 df-cvlat 38849 df-hlat 38878 df-llines 39026 df-lplanes 39027 df-lvols 39028 df-lines 39029 df-psubsp 39031 df-pmap 39032 df-padd 39324 df-lhyp 39516 df-laut 39517 df-ldil 39632 df-ltrn 39633 df-trl 39687 df-tgrp 40271 df-tendo 40283 df-edring 40285 df-dveca 40531 df-disoa 40557 df-dvech 40607 df-dib 40667 df-dic 40701 df-dih 40757 df-doch 40876 df-djh 40923 df-lcdual 41115 df-mapd 41153 df-hvmap 41285 df-hdmap1 41321 df-hdmap 41322 df-hgmap 41412 |
This theorem is referenced by: hgmapvvlem1 41451 hdmapglem7 41457 |
Copyright terms: Public domain | W3C validator |