Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem5 Structured version   Visualization version   GIF version

Theorem hdmapglem5 41967
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem5.h 𝐻 = (LHyp‘𝐾)
hdmapglem5.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem5.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem5.v 𝑉 = (Base‘𝑈)
hdmapglem5.p + = (+g𝑈)
hdmapglem5.m = (-g𝑈)
hdmapglem5.q · = ( ·𝑠𝑈)
hdmapglem5.r 𝑅 = (Scalar‘𝑈)
hdmapglem5.b 𝐵 = (Base‘𝑅)
hdmapglem5.t × = (.r𝑅)
hdmapglem5.z 0 = (0g𝑅)
hdmapglem5.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem5.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem5.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapglem5.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapglem5.i (𝜑𝐼𝐵)
hdmapglem5.j (𝜑𝐽𝐵)
Assertion
Ref Expression
hdmapglem5 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapglem5
StepHypRef Expression
1 hdmapglem5.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmapglem5.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41155 . . . 4 (𝜑𝑈 ∈ LMod)
5 hdmapglem5.r . . . . 5 𝑅 = (Scalar‘𝑈)
65lmodring 20802 . . . 4 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
74, 6syl 17 . . 3 (𝜑𝑅 ∈ Ring)
8 hdmapglem5.b . . . 4 𝐵 = (Base‘𝑅)
9 hdmapglem5.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
10 hdmapglem5.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmapglem5.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
12 eqid 2731 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2731 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2731 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
15 hdmapglem5.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
161, 12, 13, 2, 10, 14, 15, 3dvheveccl 41157 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1716eldifad 3914 . . . . . . . 8 (𝜑𝐸𝑉)
1817snssd 4761 . . . . . . 7 (𝜑 → {𝐸} ⊆ 𝑉)
19 hdmapglem5.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
201, 2, 10, 19dochssv 41400 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
213, 18, 20syl2anc 584 . . . . . 6 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
22 hdmapglem5.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
2321, 22sseldd 3935 . . . . 5 (𝜑𝐶𝑉)
24 hdmapglem5.d . . . . . 6 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2521, 24sseldd 3935 . . . . 5 (𝜑𝐷𝑉)
261, 2, 10, 5, 8, 11, 3, 23, 25hdmapipcl 41950 . . . 4 (𝜑 → ((𝑆𝐷)‘𝐶) ∈ 𝐵)
271, 2, 5, 8, 9, 3, 26hgmapcl 41934 . . 3 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵)
28 hdmapglem5.t . . . 4 × = (.r𝑅)
29 eqid 2731 . . . 4 (1r𝑅) = (1r𝑅)
308, 28, 29ringlidm 20188 . . 3 ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵) → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
317, 27, 30syl2anc 584 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
32 hdmapglem5.p . . 3 + = (+g𝑈)
33 hdmapglem5.m . . 3 = (-g𝑈)
34 hdmapglem5.q . . 3 · = ( ·𝑠𝑈)
35 hdmapglem5.z . . 3 0 = (0g𝑅)
368, 29ringidcl 20184 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
377, 36syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
381, 2, 5, 29, 9, 3hgmapval1 41938 . . . . 5 (𝜑 → (𝐺‘(1r𝑅)) = (1r𝑅))
3938oveq2d 7362 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = (((𝑆𝐷)‘𝐶) × (1r𝑅)))
408, 28, 29ringridm 20189 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑆𝐷)‘𝐶) ∈ 𝐵) → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
417, 26, 40syl2anc 584 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
4239, 41eqtrd 2766 . . 3 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = ((𝑆𝐷)‘𝐶))
431, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42hdmapinvlem4 41966 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = ((𝑆𝐶)‘𝐷))
4431, 43eqtr3d 2768 1 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  {csn 4576  cop 4582   I cid 5510  cres 5618  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  -gcsg 18848  1rcur 20100  Ringcrg 20152  LModclmod 20794  HLchlt 39395  LHypclh 40029  LTrncltrn 40146  DVecHcdvh 41123  ocHcoch 41392  HDMapchdma 41837  HGMapchg 41928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-riotaBAD 38998
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-0g 17345  df-mre 17488  df-mrc 17489  df-acs 17491  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19230  df-oppg 19259  df-lsm 19549  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-dvr 20320  df-nzr 20429  df-rlreg 20610  df-domn 20611  df-drng 20647  df-lmod 20796  df-lss 20866  df-lsp 20906  df-lvec 21038  df-lsatoms 39021  df-lshyp 39022  df-lcv 39064  df-lfl 39103  df-lkr 39131  df-ldual 39169  df-oposet 39221  df-ol 39223  df-oml 39224  df-covers 39311  df-ats 39312  df-atl 39343  df-cvlat 39367  df-hlat 39396  df-llines 39543  df-lplanes 39544  df-lvols 39545  df-lines 39546  df-psubsp 39548  df-pmap 39549  df-padd 39841  df-lhyp 40033  df-laut 40034  df-ldil 40149  df-ltrn 40150  df-trl 40204  df-tgrp 40788  df-tendo 40800  df-edring 40802  df-dveca 41048  df-disoa 41074  df-dvech 41124  df-dib 41184  df-dic 41218  df-dih 41274  df-doch 41393  df-djh 41440  df-lcdual 41632  df-mapd 41670  df-hvmap 41802  df-hdmap1 41838  df-hdmap 41839  df-hgmap 41929
This theorem is referenced by:  hgmapvvlem1  41968  hdmapglem7  41974
  Copyright terms: Public domain W3C validator