Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapglem5 Structured version   Visualization version   GIF version

Theorem hdmapglem5 39218
Description: Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapglem5.h 𝐻 = (LHyp‘𝐾)
hdmapglem5.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapglem5.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapglem5.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapglem5.v 𝑉 = (Base‘𝑈)
hdmapglem5.p + = (+g𝑈)
hdmapglem5.m = (-g𝑈)
hdmapglem5.q · = ( ·𝑠𝑈)
hdmapglem5.r 𝑅 = (Scalar‘𝑈)
hdmapglem5.b 𝐵 = (Base‘𝑅)
hdmapglem5.t × = (.r𝑅)
hdmapglem5.z 0 = (0g𝑅)
hdmapglem5.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapglem5.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapglem5.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapglem5.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapglem5.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapglem5.i (𝜑𝐼𝐵)
hdmapglem5.j (𝜑𝐽𝐵)
Assertion
Ref Expression
hdmapglem5 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapglem5
StepHypRef Expression
1 hdmapglem5.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 hdmapglem5.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapglem5.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 38406 . . . 4 (𝜑𝑈 ∈ LMod)
5 hdmapglem5.r . . . . 5 𝑅 = (Scalar‘𝑈)
65lmodring 19635 . . . 4 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
74, 6syl 17 . . 3 (𝜑𝑅 ∈ Ring)
8 hdmapglem5.b . . . 4 𝐵 = (Base‘𝑅)
9 hdmapglem5.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
10 hdmapglem5.v . . . . 5 𝑉 = (Base‘𝑈)
11 hdmapglem5.s . . . . 5 𝑆 = ((HDMap‘𝐾)‘𝑊)
12 eqid 2798 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
13 eqid 2798 . . . . . . . . . 10 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2798 . . . . . . . . . 10 (0g𝑈) = (0g𝑈)
15 hdmapglem5.e . . . . . . . . . 10 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
161, 12, 13, 2, 10, 14, 15, 3dvheveccl 38408 . . . . . . . . 9 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1716eldifad 3893 . . . . . . . 8 (𝜑𝐸𝑉)
1817snssd 4702 . . . . . . 7 (𝜑 → {𝐸} ⊆ 𝑉)
19 hdmapglem5.o . . . . . . . 8 𝑂 = ((ocH‘𝐾)‘𝑊)
201, 2, 10, 19dochssv 38651 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
213, 18, 20syl2anc 587 . . . . . 6 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
22 hdmapglem5.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
2321, 22sseldd 3916 . . . . 5 (𝜑𝐶𝑉)
24 hdmapglem5.d . . . . . 6 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2521, 24sseldd 3916 . . . . 5 (𝜑𝐷𝑉)
261, 2, 10, 5, 8, 11, 3, 23, 25hdmapipcl 39201 . . . 4 (𝜑 → ((𝑆𝐷)‘𝐶) ∈ 𝐵)
271, 2, 5, 8, 9, 3, 26hgmapcl 39185 . . 3 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵)
28 hdmapglem5.t . . . 4 × = (.r𝑅)
29 eqid 2798 . . . 4 (1r𝑅) = (1r𝑅)
308, 28, 29ringlidm 19317 . . 3 ((𝑅 ∈ Ring ∧ (𝐺‘((𝑆𝐷)‘𝐶)) ∈ 𝐵) → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
317, 27, 30syl2anc 587 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = (𝐺‘((𝑆𝐷)‘𝐶)))
32 hdmapglem5.p . . 3 + = (+g𝑈)
33 hdmapglem5.m . . 3 = (-g𝑈)
34 hdmapglem5.q . . 3 · = ( ·𝑠𝑈)
35 hdmapglem5.z . . 3 0 = (0g𝑅)
368, 29ringidcl 19314 . . . 4 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
377, 36syl 17 . . 3 (𝜑 → (1r𝑅) ∈ 𝐵)
381, 2, 5, 29, 9, 3hgmapval1 39189 . . . . 5 (𝜑 → (𝐺‘(1r𝑅)) = (1r𝑅))
3938oveq2d 7151 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = (((𝑆𝐷)‘𝐶) × (1r𝑅)))
408, 28, 29ringridm 19318 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑆𝐷)‘𝐶) ∈ 𝐵) → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
417, 26, 40syl2anc 587 . . . 4 (𝜑 → (((𝑆𝐷)‘𝐶) × (1r𝑅)) = ((𝑆𝐷)‘𝐶))
4239, 41eqtrd 2833 . . 3 (𝜑 → (((𝑆𝐷)‘𝐶) × (𝐺‘(1r𝑅))) = ((𝑆𝐷)‘𝐶))
431, 15, 19, 2, 10, 32, 33, 34, 5, 8, 28, 35, 11, 9, 3, 22, 24, 26, 37, 42hdmapinvlem4 39217 . 2 (𝜑 → ((1r𝑅) × (𝐺‘((𝑆𝐷)‘𝐶))) = ((𝑆𝐶)‘𝐷))
4431, 43eqtr3d 2835 1 (𝜑 → (𝐺‘((𝑆𝐷)‘𝐶)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wss 3881  {csn 4525  cop 4531   I cid 5424  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  -gcsg 18097  1rcur 19244  Ringcrg 19290  LModclmod 19627  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  DVecHcdvh 38374  ocHcoch 38643  HDMapchdma 39088  HGMapchg 39179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-oppg 18466  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lsatoms 36272  df-lshyp 36273  df-lcv 36315  df-lfl 36354  df-lkr 36382  df-ldual 36420  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tgrp 38039  df-tendo 38051  df-edring 38053  df-dveca 38299  df-disoa 38325  df-dvech 38375  df-dib 38435  df-dic 38469  df-dih 38525  df-doch 38644  df-djh 38691  df-lcdual 38883  df-mapd 38921  df-hvmap 39053  df-hdmap1 39089  df-hdmap 39090  df-hgmap 39180
This theorem is referenced by:  hgmapvvlem1  39219  hdmapglem7  39225
  Copyright terms: Public domain W3C validator