![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
ldualvsubcl.f | β’ πΉ = (LFnlβπ) |
ldualvsubcl.d | β’ π· = (LDualβπ) |
ldualvsubcl.m | β’ β = (-gβπ·) |
ldualvsubcl.w | β’ (π β π β LMod) |
ldualvsubcl.g | β’ (π β πΊ β πΉ) |
ldualvsubcl.h | β’ (π β π» β πΉ) |
Ref | Expression |
---|---|
ldualvsubcl | β’ (π β (πΊ β π») β πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 β’ (Scalarβπ) = (Scalarβπ) | |
2 | eqid 2732 | . . 3 β’ (invgβ(Scalarβπ)) = (invgβ(Scalarβπ)) | |
3 | eqid 2732 | . . 3 β’ (1rβ(Scalarβπ)) = (1rβ(Scalarβπ)) | |
4 | ldualvsubcl.f | . . 3 β’ πΉ = (LFnlβπ) | |
5 | ldualvsubcl.d | . . 3 β’ π· = (LDualβπ) | |
6 | eqid 2732 | . . 3 β’ (+gβπ·) = (+gβπ·) | |
7 | eqid 2732 | . . 3 β’ ( Β·π βπ·) = ( Β·π βπ·) | |
8 | ldualvsubcl.m | . . 3 β’ β = (-gβπ·) | |
9 | ldualvsubcl.w | . . 3 β’ (π β π β LMod) | |
10 | ldualvsubcl.g | . . 3 β’ (π β πΊ β πΉ) | |
11 | ldualvsubcl.h | . . 3 β’ (π β π» β πΉ) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualvsub 38013 | . 2 β’ (π β (πΊ β π») = (πΊ(+gβπ·)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))( Β·π βπ·)π»))) |
13 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
14 | 1 | lmodring 20471 | . . . . . . 7 β’ (π β LMod β (Scalarβπ) β Ring) |
15 | 9, 14 | syl 17 | . . . . . 6 β’ (π β (Scalarβπ) β Ring) |
16 | ringgrp 20054 | . . . . . 6 β’ ((Scalarβπ) β Ring β (Scalarβπ) β Grp) | |
17 | 15, 16 | syl 17 | . . . . 5 β’ (π β (Scalarβπ) β Grp) |
18 | 13, 3 | ringidcl 20076 | . . . . . 6 β’ ((Scalarβπ) β Ring β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
19 | 15, 18 | syl 17 | . . . . 5 β’ (π β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
20 | 13, 2 | grpinvcl 18868 | . . . . 5 β’ (((Scalarβπ) β Grp β§ (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β ((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β (Baseβ(Scalarβπ))) |
21 | 17, 19, 20 | syl2anc 584 | . . . 4 β’ (π β ((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β (Baseβ(Scalarβπ))) |
22 | 4, 1, 13, 5, 7, 9, 21, 11 | ldualvscl 37997 | . . 3 β’ (π β (((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))( Β·π βπ·)π») β πΉ) |
23 | 4, 5, 6, 9, 10, 22 | ldualvaddcl 37988 | . 2 β’ (π β (πΊ(+gβπ·)(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))( Β·π βπ·)π»)) β πΉ) |
24 | 12, 23 | eqeltrd 2833 | 1 β’ (π β (πΊ β π») β πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 Grpcgrp 18815 invgcminusg 18816 -gcsg 18817 1rcur 19998 Ringcrg 20049 LModclmod 20463 LFnlclfn 37915 LDualcld 37981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-oppr 20142 df-lmod 20465 df-lfl 37916 df-ldual 37982 |
This theorem is referenced by: lcfrlem3 40403 lcfrlem30 40431 |
Copyright terms: Public domain | W3C validator |