Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubcl Structured version   Visualization version   GIF version

Theorem ldualvsubcl 37097
Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubcl.f 𝐹 = (LFnl‘𝑊)
ldualvsubcl.d 𝐷 = (LDual‘𝑊)
ldualvsubcl.m = (-g𝐷)
ldualvsubcl.w (𝜑𝑊 ∈ LMod)
ldualvsubcl.g (𝜑𝐺𝐹)
ldualvsubcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsubcl (𝜑 → (𝐺 𝐻) ∈ 𝐹)

Proof of Theorem ldualvsubcl
StepHypRef Expression
1 eqid 2738 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2738 . . 3 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
3 eqid 2738 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
4 ldualvsubcl.f . . 3 𝐹 = (LFnl‘𝑊)
5 ldualvsubcl.d . . 3 𝐷 = (LDual‘𝑊)
6 eqid 2738 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2738 . . 3 ( ·𝑠𝐷) = ( ·𝑠𝐷)
8 ldualvsubcl.m . . 3 = (-g𝐷)
9 ldualvsubcl.w . . 3 (𝜑𝑊 ∈ LMod)
10 ldualvsubcl.g . . 3 (𝜑𝐺𝐹)
11 ldualvsubcl.h . . 3 (𝜑𝐻𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualvsub 37096 . 2 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)))
13 eqid 2738 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
141lmodring 20046 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
159, 14syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑊) ∈ Ring)
16 ringgrp 19703 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑 → (Scalar‘𝑊) ∈ Grp)
1813, 3ringidcl 19722 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1915, 18syl 17 . . . . 5 (𝜑 → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2013, 2grpinvcl 18542 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2117, 19, 20syl2anc 583 . . . 4 (𝜑 → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
224, 1, 13, 5, 7, 9, 21, 11ldualvscl 37080 . . 3 (𝜑 → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
234, 5, 6, 9, 10, 22ldualvaddcl 37071 . 2 (𝜑 → (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)) ∈ 𝐹)
2412, 23eqeltrd 2839 1 (𝜑 → (𝐺 𝐻) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  1rcur 19652  Ringcrg 19698  LModclmod 20038  LFnlclfn 36998  LDualcld 37064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-lmod 20040  df-lfl 36999  df-ldual 37065
This theorem is referenced by:  lcfrlem3  39485  lcfrlem30  39513
  Copyright terms: Public domain W3C validator