Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsubcl | Structured version Visualization version GIF version |
Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.) |
Ref | Expression |
---|---|
ldualvsubcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsubcl.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsubcl.m | ⊢ − = (-g‘𝐷) |
ldualvsubcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsubcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
ldualvsubcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsubcl | ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
2 | eqid 2737 | . . 3 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
3 | eqid 2737 | . . 3 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
4 | ldualvsubcl.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
5 | ldualvsubcl.d | . . 3 ⊢ 𝐷 = (LDual‘𝑊) | |
6 | eqid 2737 | . . 3 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
7 | eqid 2737 | . . 3 ⊢ ( ·𝑠 ‘𝐷) = ( ·𝑠 ‘𝐷) | |
8 | ldualvsubcl.m | . . 3 ⊢ − = (-g‘𝐷) | |
9 | ldualvsubcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
10 | ldualvsubcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
11 | ldualvsubcl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | ldualvsub 37373 | . 2 ⊢ (𝜑 → (𝐺 − 𝐻) = (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝐷)𝐻))) |
13 | eqid 2737 | . . . 4 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
14 | 1 | lmodring 20203 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring) |
15 | 9, 14 | syl 17 | . . . . . 6 ⊢ (𝜑 → (Scalar‘𝑊) ∈ Ring) |
16 | ringgrp 19856 | . . . . . 6 ⊢ ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (Scalar‘𝑊) ∈ Grp) |
18 | 13, 3 | ringidcl 19875 | . . . . . 6 ⊢ ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
19 | 15, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
20 | 13, 2 | grpinvcl 18696 | . . . . 5 ⊢ (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊))) |
21 | 17, 19, 20 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊))) |
22 | 4, 1, 13, 5, 7, 9, 21, 11 | ldualvscl 37357 | . . 3 ⊢ (𝜑 → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝐷)𝐻) ∈ 𝐹) |
23 | 4, 5, 6, 9, 10, 22 | ldualvaddcl 37348 | . 2 ⊢ (𝜑 → (𝐺(+g‘𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝐷)𝐻)) ∈ 𝐹) |
24 | 12, 23 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝐺 − 𝐻) ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 Scalarcsca 17035 ·𝑠 cvsca 17036 Grpcgrp 18646 invgcminusg 18647 -gcsg 18648 1rcur 19805 Ringcrg 19851 LModclmod 20195 LFnlclfn 37275 LDualcld 37341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-of 7573 df-om 7758 df-1st 7876 df-2nd 7877 df-tpos 8089 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-1o 8344 df-er 8546 df-map 8665 df-en 8782 df-dom 8783 df-sdom 8784 df-fin 8785 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-2 12109 df-3 12110 df-4 12111 df-5 12112 df-6 12113 df-n0 12307 df-z 12393 df-uz 12656 df-fz 13313 df-struct 16918 df-sets 16935 df-slot 16953 df-ndx 16965 df-base 16983 df-plusg 17045 df-mulr 17046 df-sca 17048 df-vsca 17049 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-grp 18649 df-minusg 18650 df-sbg 18651 df-cmn 19456 df-abl 19457 df-mgp 19789 df-ur 19806 df-ring 19853 df-oppr 19930 df-lmod 20197 df-lfl 37276 df-ldual 37342 |
This theorem is referenced by: lcfrlem3 39763 lcfrlem30 39791 |
Copyright terms: Public domain | W3C validator |