Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubcl Structured version   Visualization version   GIF version

Theorem ldualvsubcl 39157
Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubcl.f 𝐹 = (LFnl‘𝑊)
ldualvsubcl.d 𝐷 = (LDual‘𝑊)
ldualvsubcl.m = (-g𝐷)
ldualvsubcl.w (𝜑𝑊 ∈ LMod)
ldualvsubcl.g (𝜑𝐺𝐹)
ldualvsubcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsubcl (𝜑 → (𝐺 𝐻) ∈ 𝐹)

Proof of Theorem ldualvsubcl
StepHypRef Expression
1 eqid 2737 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2737 . . 3 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
3 eqid 2737 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
4 ldualvsubcl.f . . 3 𝐹 = (LFnl‘𝑊)
5 ldualvsubcl.d . . 3 𝐷 = (LDual‘𝑊)
6 eqid 2737 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2737 . . 3 ( ·𝑠𝐷) = ( ·𝑠𝐷)
8 ldualvsubcl.m . . 3 = (-g𝐷)
9 ldualvsubcl.w . . 3 (𝜑𝑊 ∈ LMod)
10 ldualvsubcl.g . . 3 (𝜑𝐺𝐹)
11 ldualvsubcl.h . . 3 (𝜑𝐻𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualvsub 39156 . 2 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)))
13 eqid 2737 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
141lmodring 20866 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
159, 14syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑊) ∈ Ring)
16 ringgrp 20235 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑 → (Scalar‘𝑊) ∈ Grp)
1813, 3ringidcl 20262 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1915, 18syl 17 . . . . 5 (𝜑 → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2013, 2grpinvcl 19005 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2117, 19, 20syl2anc 584 . . . 4 (𝜑 → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
224, 1, 13, 5, 7, 9, 21, 11ldualvscl 39140 . . 3 (𝜑 → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
234, 5, 6, 9, 10, 22ldualvaddcl 39131 . 2 (𝜑 → (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)) ∈ 𝐹)
2412, 23eqeltrd 2841 1 (𝜑 → (𝐺 𝐻) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953  1rcur 20178  Ringcrg 20230  LModclmod 20858  LFnlclfn 39058  LDualcld 39124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-lmod 20860  df-lfl 39059  df-ldual 39125
This theorem is referenced by:  lcfrlem3  41546  lcfrlem30  41574
  Copyright terms: Public domain W3C validator