Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatnle | Structured version Visualization version GIF version |
Description: The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 30457 analog.) (Contributed by NM, 10-Jan-2015.) |
Ref | Expression |
---|---|
lsatnle.o | ⊢ 0 = (0g‘𝑊) |
lsatnle.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lsatnle.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatnle.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lsatnle.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lsatnle.q | ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
Ref | Expression |
---|---|
lsatnle | ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ (𝑈 ∩ 𝑄) = { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatnle.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | eqid 2737 | . . 3 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
3 | lsatnle.a | . . 3 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
4 | eqid 2737 | . . 3 ⊢ ( ⋖L ‘𝑊) = ( ⋖L ‘𝑊) | |
5 | lsatnle.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
6 | lsatnle.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
7 | lsatnle.q | . . 3 ⊢ (𝜑 → 𝑄 ∈ 𝐴) | |
8 | 1, 2, 3, 4, 5, 6, 7 | lcv1 36792 | . 2 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ 𝑈( ⋖L ‘𝑊)(𝑈(LSSum‘𝑊)𝑄))) |
9 | lsatnle.o | . . 3 ⊢ 0 = (0g‘𝑊) | |
10 | 1, 2, 9, 3, 4, 5, 6, 7 | lcvp 36791 | . 2 ⊢ (𝜑 → ((𝑈 ∩ 𝑄) = { 0 } ↔ 𝑈( ⋖L ‘𝑊)(𝑈(LSSum‘𝑊)𝑄))) |
11 | 8, 10 | bitr4d 285 | 1 ⊢ (𝜑 → (¬ 𝑄 ⊆ 𝑈 ↔ (𝑈 ∩ 𝑄) = { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2110 ∩ cin 3865 ⊆ wss 3866 {csn 4541 class class class wbr 5053 ‘cfv 6380 (class class class)co 7213 0gc0g 16944 LSSumclsm 19023 LSubSpclss 19968 LVecclvec 20139 LSAtomsclsa 36725 ⋖L clcv 36769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-tpos 7968 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-0g 16946 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-grp 18368 df-minusg 18369 df-sbg 18370 df-subg 18540 df-cntz 18711 df-oppg 18738 df-lsm 19025 df-cmn 19172 df-abl 19173 df-mgp 19505 df-ur 19517 df-ring 19564 df-oppr 19641 df-dvdsr 19659 df-unit 19660 df-invr 19690 df-drng 19769 df-lmod 19901 df-lss 19969 df-lsp 20009 df-lvec 20140 df-lsatoms 36727 df-lcv 36770 |
This theorem is referenced by: lsatnem0 36796 |
Copyright terms: Public domain | W3C validator |