Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppff1o Structured version   Visualization version   GIF version

Theorem oppff1o 49135
Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
oppff1.o 𝑂 = (oppCat‘𝐶)
oppff1.p 𝑃 = (oppCat‘𝐷)
oppff1o.c (𝜑𝐶𝑉)
oppff1o.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppff1o (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))

Proof of Theorem oppff1o
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppff1.o . . . 4 𝑂 = (oppCat‘𝐶)
2 oppff1.p . . . 4 𝑃 = (oppCat‘𝐷)
31, 2oppff1 49134 . . 3 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)
43a1i 11 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃))
5 f1f 6724 . . . 4 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
64, 5syl 17 . . 3 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
7 fveq2 6826 . . . . . 6 (𝑔 = ( oppFunc ‘𝑓) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
87eqeq2d 2740 . . . . 5 (𝑔 = ( oppFunc ‘𝑓) → (𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓))))
9 oppff1o.c . . . . . . 7 (𝜑𝐶𝑉)
109adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐶𝑉)
11 oppff1o.d . . . . . . 7 (𝜑𝐷𝑊)
1211adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐷𝑊)
13 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 ∈ (𝑂 Func 𝑃))
141, 2, 10, 12, 132oppffunc 49132 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘𝑓) ∈ (𝐶 Func 𝐷))
1514fvresd 6846 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑓)))
16 relfunc 17787 . . . . . . 7 Rel (𝐶 Func 𝐷)
17 eqid 2729 . . . . . . 7 ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓)
1814, 16, 172oppf 49118 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓)
1915, 18eqtr2d 2765 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
208, 14, 19rspcedvdw 3582 . . . 4 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
2120ralrimiva 3121 . . 3 (𝜑 → ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
22 dffo3 7040 . . 3 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)))
236, 21, 22sylanbrc 583 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃))
24 df-f1o 6493 . 2 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ∧ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃)))
254, 23, 24sylanbrc 583 1 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cres 5625  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  oppCatcoppc 17635   Func cfunc 17779   oppFunc coppf 49108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-hom 17203  df-cco 17204  df-cat 17592  df-cid 17593  df-homf 17594  df-comf 17595  df-oppc 17636  df-func 17783  df-oppf 49109
This theorem is referenced by:  fucoppc  49396
  Copyright terms: Public domain W3C validator