Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppff1o Structured version   Visualization version   GIF version

Theorem oppff1o 49180
Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
oppff1.o 𝑂 = (oppCat‘𝐶)
oppff1.p 𝑃 = (oppCat‘𝐷)
oppff1o.c (𝜑𝐶𝑉)
oppff1o.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppff1o (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))

Proof of Theorem oppff1o
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppff1.o . . . 4 𝑂 = (oppCat‘𝐶)
2 oppff1.p . . . 4 𝑃 = (oppCat‘𝐷)
31, 2oppff1 49179 . . 3 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)
43a1i 11 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃))
5 f1f 6719 . . . 4 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
64, 5syl 17 . . 3 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
7 fveq2 6822 . . . . . 6 (𝑔 = ( oppFunc ‘𝑓) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
87eqeq2d 2742 . . . . 5 (𝑔 = ( oppFunc ‘𝑓) → (𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓))))
9 oppff1o.c . . . . . . 7 (𝜑𝐶𝑉)
109adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐶𝑉)
11 oppff1o.d . . . . . . 7 (𝜑𝐷𝑊)
1211adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐷𝑊)
13 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 ∈ (𝑂 Func 𝑃))
141, 2, 10, 12, 132oppffunc 49177 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘𝑓) ∈ (𝐶 Func 𝐷))
1514fvresd 6842 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑓)))
16 relfunc 17766 . . . . . . 7 Rel (𝐶 Func 𝐷)
17 eqid 2731 . . . . . . 7 ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓)
1814, 16, 172oppf 49163 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓)
1915, 18eqtr2d 2767 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
208, 14, 19rspcedvdw 3580 . . . 4 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
2120ralrimiva 3124 . . 3 (𝜑 → ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
22 dffo3 7035 . . 3 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)))
236, 21, 22sylanbrc 583 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃))
24 df-f1o 6488 . 2 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ∧ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃)))
254, 23, 24sylanbrc 583 1 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cres 5618  wf 6477  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  oppCatcoppc 17614   Func cfunc 17758   oppFunc coppf 49153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-hom 17182  df-cco 17183  df-cat 17571  df-cid 17572  df-homf 17573  df-comf 17574  df-oppc 17615  df-func 17762  df-oppf 49154
This theorem is referenced by:  fucoppc  49441
  Copyright terms: Public domain W3C validator