| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppff1o | Structured version Visualization version GIF version | ||
| Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppff1.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppff1.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppff1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| oppff1o.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| oppff1o | ⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppff1.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | oppff1.p | . . . 4 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | 1, 2 | oppff1 49060 | . . 3 ⊢ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)) |
| 5 | f1f 6763 | . . . 4 ⊢ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 7 | fveq2 6865 | . . . . . 6 ⊢ (𝑔 = (oppFunc‘𝑓) → ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = ((oppFunc ↾ (𝐶 Func 𝐷))‘(oppFunc‘𝑓))) | |
| 8 | 7 | eqeq2d 2741 | . . . . 5 ⊢ (𝑔 = (oppFunc‘𝑓) → (𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ 𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘(oppFunc‘𝑓)))) |
| 9 | oppff1o.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝐶 ∈ 𝑉) |
| 11 | oppff1o.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝐷 ∈ 𝑊) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 ∈ (𝑂 Func 𝑃)) | |
| 14 | 1, 2, 10, 12, 13 | 2oppffunc 49058 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → (oppFunc‘𝑓) ∈ (𝐶 Func 𝐷)) |
| 15 | 14 | fvresd 6885 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → ((oppFunc ↾ (𝐶 Func 𝐷))‘(oppFunc‘𝑓)) = (oppFunc‘(oppFunc‘𝑓))) |
| 16 | relfunc 17830 | . . . . . . 7 ⊢ Rel (𝐶 Func 𝐷) | |
| 17 | eqid 2730 | . . . . . . 7 ⊢ (oppFunc‘𝑓) = (oppFunc‘𝑓) | |
| 18 | 14, 16, 17 | 2oppf 49049 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → (oppFunc‘(oppFunc‘𝑓)) = 𝑓) |
| 19 | 15, 18 | eqtr2d 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘(oppFunc‘𝑓))) |
| 20 | 8, 14, 19 | rspcedvdw 3600 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → ∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)) |
| 21 | 20 | ralrimiva 3127 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)) |
| 22 | dffo3 7081 | . . 3 ⊢ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃) ↔ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = ((oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))) | |
| 23 | 6, 21, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃)) |
| 24 | df-f1o 6526 | . 2 ⊢ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ ((oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ∧ (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃))) | |
| 25 | 4, 23, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → (oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 ↾ cres 5648 ⟶wf 6515 –1-1→wf1 6516 –onto→wfo 6517 –1-1-onto→wf1o 6518 ‘cfv 6519 (class class class)co 7394 oppCatcoppc 17678 Func cfunc 17822 oppFunccoppf 49039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-comf 17638 df-oppc 17679 df-func 17826 df-oppf 49040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |