| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oppff1o | Structured version Visualization version GIF version | ||
| Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| oppff1.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oppff1.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| oppff1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| oppff1o.d | ⊢ (𝜑 → 𝐷 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| oppff1o | ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppff1.o | . . . 4 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | oppff1.p | . . . 4 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | 1, 2 | oppff1 49179 | . . 3 ⊢ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)) |
| 5 | f1f 6719 | . . . 4 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃)) |
| 7 | fveq2 6822 | . . . . . 6 ⊢ (𝑔 = ( oppFunc ‘𝑓) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓))) | |
| 8 | 7 | eqeq2d 2742 | . . . . 5 ⊢ (𝑔 = ( oppFunc ‘𝑓) → (𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))) |
| 9 | oppff1o.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝐶 ∈ 𝑉) |
| 11 | oppff1o.d | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ 𝑊) | |
| 12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝐷 ∈ 𝑊) |
| 13 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 ∈ (𝑂 Func 𝑃)) | |
| 14 | 1, 2, 10, 12, 13 | 2oppffunc 49177 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘𝑓) ∈ (𝐶 Func 𝐷)) |
| 15 | 14 | fvresd 6842 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑓))) |
| 16 | relfunc 17766 | . . . . . . 7 ⊢ Rel (𝐶 Func 𝐷) | |
| 17 | eqid 2731 | . . . . . . 7 ⊢ ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓) | |
| 18 | 14, 16, 17 | 2oppf 49163 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓) |
| 19 | 15, 18 | eqtr2d 2767 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓))) |
| 20 | 8, 14, 19 | rspcedvdw 3580 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (𝑂 Func 𝑃)) → ∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)) |
| 21 | 20 | ralrimiva 3124 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)) |
| 22 | dffo3 7035 | . . 3 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))) | |
| 23 | 6, 21, 22 | sylanbrc 583 | . 2 ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃)) |
| 24 | df-f1o 6488 | . 2 ⊢ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ∧ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃))) | |
| 25 | 4, 23, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ↾ cres 5618 ⟶wf 6477 –1-1→wf1 6478 –onto→wfo 6479 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 oppCatcoppc 17614 Func cfunc 17758 oppFunc coppf 49153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-hom 17182 df-cco 17183 df-cat 17571 df-cid 17572 df-homf 17573 df-comf 17574 df-oppc 17615 df-func 17762 df-oppf 49154 |
| This theorem is referenced by: fucoppc 49441 |
| Copyright terms: Public domain | W3C validator |