Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oppff1o Structured version   Visualization version   GIF version

Theorem oppff1o 49274
Description: The operation generating opposite functors is bijective. (Contributed by Zhi Wang, 17-Nov-2025.)
Hypotheses
Ref Expression
oppff1.o 𝑂 = (oppCat‘𝐶)
oppff1.p 𝑃 = (oppCat‘𝐷)
oppff1o.c (𝜑𝐶𝑉)
oppff1o.d (𝜑𝐷𝑊)
Assertion
Ref Expression
oppff1o (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))

Proof of Theorem oppff1o
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppff1.o . . . 4 𝑂 = (oppCat‘𝐶)
2 oppff1.p . . . 4 𝑃 = (oppCat‘𝐷)
31, 2oppff1 49273 . . 3 ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃)
43a1i 11 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃))
5 f1f 6724 . . . 4 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
64, 5syl 17 . . 3 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃))
7 fveq2 6828 . . . . . 6 (𝑔 = ( oppFunc ‘𝑓) → (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
87eqeq2d 2744 . . . . 5 (𝑔 = ( oppFunc ‘𝑓) → (𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔) ↔ 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓))))
9 oppff1o.c . . . . . . 7 (𝜑𝐶𝑉)
109adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐶𝑉)
11 oppff1o.d . . . . . . 7 (𝜑𝐷𝑊)
1211adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝐷𝑊)
13 simpr 484 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 ∈ (𝑂 Func 𝑃))
141, 2, 10, 12, 132oppffunc 49271 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘𝑓) ∈ (𝐶 Func 𝐷))
1514fvresd 6848 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)) = ( oppFunc ‘( oppFunc ‘𝑓)))
16 relfunc 17771 . . . . . . 7 Rel (𝐶 Func 𝐷)
17 eqid 2733 . . . . . . 7 ( oppFunc ‘𝑓) = ( oppFunc ‘𝑓)
1814, 16, 172oppf 49257 . . . . . 6 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ( oppFunc ‘( oppFunc ‘𝑓)) = 𝑓)
1915, 18eqtr2d 2769 . . . . 5 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → 𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘( oppFunc ‘𝑓)))
208, 14, 19rspcedvdw 3576 . . . 4 ((𝜑𝑓 ∈ (𝑂 Func 𝑃)) → ∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
2120ralrimiva 3125 . . 3 (𝜑 → ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔))
22 dffo3 7041 . . 3 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)⟶(𝑂 Func 𝑃) ∧ ∀𝑓 ∈ (𝑂 Func 𝑃)∃𝑔 ∈ (𝐶 Func 𝐷)𝑓 = (( oppFunc ↾ (𝐶 Func 𝐷))‘𝑔)))
236, 21, 22sylanbrc 583 . 2 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃))
24 df-f1o 6493 . 2 (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃) ↔ (( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1→(𝑂 Func 𝑃) ∧ ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–onto→(𝑂 Func 𝑃)))
254, 23, 24sylanbrc 583 1 (𝜑 → ( oppFunc ↾ (𝐶 Func 𝐷)):(𝐶 Func 𝐷)–1-1-onto→(𝑂 Func 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cres 5621  wf 6482  1-1wf1 6483  ontowfo 6484  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  oppCatcoppc 17619   Func cfunc 17763   oppFunc coppf 49247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-hom 17187  df-cco 17188  df-cat 17576  df-cid 17577  df-homf 17578  df-comf 17579  df-oppc 17620  df-func 17767  df-oppf 49248
This theorem is referenced by:  fucoppc  49535
  Copyright terms: Public domain W3C validator